若數(shù)列{an},滿足an+1=
2an(0≤an
1
2
)
2an-1(
1
2
an<1)
,且a1=
6
7
,則a2013的值為(  )
分析:根據(jù)首項的值和遞推公式依次求出a2、a3、a4的值,即求出數(shù)列的周期,根據(jù)周期性求出a2013的值.
解答:解:由題意知an+1=
2an     (0≤an
1
2
)
2an-1  (
1
2
an<1)
,
∵a1=
6
7
,∴a2=2a1-1=
12
7
-1
=
5
7
1
2
,
同理可得a3=2a2-1=
3
7
1
2
,a4=2a3=
6
7
,…,
則此數(shù)列的周期是3,
∴a2013=a3×671=
3
7
,
故選C.
點評:本題考查了數(shù)列的遞推公式和周期性的應用,此題的遞推公式看上去較難,只能逐一求值,知道出現(xiàn)相同的項即可,即求出數(shù)列的周期.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質m”:
an+an+2
2
an+1
;   ②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
,S3=
7
4
,證明:數(shù)列{Sn}具有“性質m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意的n≥3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質m”:
an+an+2
2
an+1
;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
,S3=
7
4
,求證:數(shù)列{Sn}具有“性質m”;
(3)數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意n∈[3,100]且n∈N*,數(shù)列{dn}具有“性質m”,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省六安一中高三(下)第七次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內不同的四點,且,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為
(k∈N*).
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案