【題目】函數(shù)的圖象如圖所示,先將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>6倍,縱坐標(biāo)不變,再將所得函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,下列結(jié)論正確的是( )
A.函數(shù)是奇函數(shù)B.函數(shù)在區(qū)間上是增函數(shù)
C.函數(shù)圖象關(guān)于對(duì)稱D.函數(shù)圖象關(guān)于直線對(duì)稱
【答案】D
【解析】
先由三角函數(shù)的圖像求出,然后結(jié)合三角函數(shù)圖像的平移變換及伸縮變換求出,再結(jié)合三角函數(shù)圖像的性質(zhì)逐一判斷即可得解.
解:由圖得函數(shù)的周期,
所以.
因?yàn)楹瘮?shù)的圖象過點(diǎn),
所以,
所以,
所以.
因?yàn)?/span>,
所以,
所以.
先將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>6倍,縱坐標(biāo)不變,得到的圖象,再將所得函數(shù)的圖象向左平移個(gè)單位長度,得到.
對(duì)于A選項(xiàng),因?yàn)楹瘮?shù)為偶函數(shù),故A錯(cuò)誤;
對(duì)于B選項(xiàng),令,則,
而,故B錯(cuò)誤;
對(duì)于C選項(xiàng),令,則,所以函數(shù)的對(duì)稱中心為,故C錯(cuò)誤;
對(duì)于D選項(xiàng),令,則,所以函數(shù)的對(duì)稱軸為,當(dāng)時(shí),有,即D正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知等邊的邊長為3,點(diǎn),分別是邊,上的點(diǎn),且,.如圖2,將沿折起到的位置.
(1)求證:平面平面;
(2)給出三個(gè)條件:①;②二面角大小為;③.在這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題的條件中,并作答:在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為,若存在,求出的長;若不存在,請(qǐng)說明理由.注:如果多個(gè)條件分別解答,按第一個(gè)解答給分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱,底面為等腰梯形,;,側(cè)面底面.
(1)在側(cè)面中能否作一條直線使其與平行?如果能,請(qǐng)寫出作圖過程并給出證明;如果不能,請(qǐng)說明理由;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,已知過點(diǎn)且斜率為1的直線與曲線:(是參數(shù))交于兩點(diǎn),與直線:交于點(diǎn).
(1)求曲線的普通方程與直線的直角坐標(biāo)方程;
(2)若的中點(diǎn)為,比較與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若, 求使方程有唯一解的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,是自然對(duì)數(shù)的底數(shù).
(1)若曲線在點(diǎn)處的切線為,求的值;
(2)求函數(shù)的極大值;
(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)取一個(gè)由0和1構(gòu)成的8位數(shù),它的偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等的概率為____________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com