3.已a,b,c分別為△ABC三個內角A,B,C的對邊,且3cosC+$\sqrt{3}$sinC=$\frac{3a}$,AC邊上的垂直平分線交邊AB于點D.
(I)求∠B的大。
(Ⅱ)若a=2,且△DBC的面積為$\frac{\sqrt{3}}{2}$,求邊c的值.

分析 (Ⅰ)根據(jù)兩角和差的正弦公式以及正弦定理進行化簡即可,求∠B的大小;
(Ⅱ)根據(jù)a=2,且△DBC的面積為$\frac{\sqrt{3}}{2}$,求出BD,利用余弦定理求出CD,可得AD,即可求邊c的值.

解答 解:(I)∵3cosC+$\sqrt{3}$sinC=$\frac{3a}$,
∴3cosC+$\sqrt{3}$sinC=$\frac{3sinA}{sinB}$,
∴3sinBcosC+$\sqrt{3}$sinBsinC=3sin(B+C),
∴3sinBcosC+$\sqrt{3}$sinBsinC=3sinBcosC+3cosBsinC,
∴$\sqrt{3}$sinB=3cosB,
∴tanB=$\sqrt{3}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$;
(Ⅱ)∵a=2,且△DBC的面積為$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}•BD•2•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
∴BD=1,
∴CD=$\sqrt{1+4-2×1×2×\frac{1}{2}}$=$\sqrt{3}$,
∴$AD=\sqrt{3}$,
∴c=AB=$\sqrt{3}$+1.

點評 本題主要考查余弦定理,三角形面積的計算,根據(jù)正弦定理和兩角和差的正弦公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.cos21°+cos22°+cos23°+…+cos290°的值為( 。
A.90B.45C.44.5D.44

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設f(cosx)=cos5x.求:
(1)f(cos$\frac{π}{6}$); 
(2)f($\frac{1}{2}$);   
(3)f(sinx).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1-{a}^{x}}{1+{a}^{x}}$,(a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)a=2時,函數(shù)g(x)和f(x)的圖象關于直線x=1對稱,求函數(shù)g(x)的解析式;進一步研究函數(shù)G(x)=|g(x)|的圖象有什么性質.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x∈Z||x|≤2},B={x|x2-2x-8≥0},則A∩(∁RB)=( 。
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{2}D.{x|-2<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.用誘導公式求下列三角函數(shù)值(可用計算器):
(1)cos$\frac{65}{6}$π;
(2)sin(-$\frac{31}{4}$π);
(3)sin670°39′;
(4)tan(-$\frac{26π}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在等差數(shù)列{an}中,對任意n∈N+,都有an>an+1,且a2,a8是方程x2-12x+m=0的兩根,且前15項的和S15=m,則數(shù)列{an}的公差是( 。
A.-2或-3B.2或3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若函數(shù)f(x)=$\sqrt{3}$sin(x+φ)-cos(x+φ)(0<φ<π)為奇函數(shù),將函數(shù)f(x)圖象上所有點橫坐標變?yōu)樵瓉淼囊话,縱坐標不變;再向右平移$\frac{π}{8}$個單位得到函數(shù)g(x),則g(x)的解析式可以是( 。
A.$g(x)=2sin(2x-\frac{π}{4})$B.$g(x)=2sin(2x-\frac{π}{8})$C.$g(x)=2sin(\frac{1}{2}x-\frac{π}{4})$D.$g(x)=2sin(\frac{1}{2}x-\frac{π}{16})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓C過點(1,2)和(2,1),且圓心在直線x+y-4=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)若一束光線l自點A(-3,3)發(fā)出,射到x軸上,被x軸反射到圓C上,若反射點為M(a,0),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案