12.已知命題p:?x∈(0,+∞),2x<x2,命題q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0,則.( 。
A.p∨q為假B.p∧q為真C.p∧¬q為真D.p∧¬q為假

分析 舉出正例x=3,可判斷命題p的真假,舉出反例x=1,可判斷命題q的真假,進(jìn)而根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:當(dāng)x=3時(shí),2x<x2,
故命題p:?x∈(0,+∞),2x<x2為真命題;
x=1時(shí),x+$\frac{1}{x}$-2=0,
故命題q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0為假命題,
故p∨q為真命題;
p∧q為假命題;
p∧¬q為真命題;
p∧¬q為真命題;
故選:C

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了指數(shù)函數(shù)圖象和性質(zhì),對(duì)勾函數(shù)的圖象和性質(zhì),復(fù)合命題,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d=2,S10=120.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若${b_n}={\sqrt{3}^{{a_n}-1}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為7,最小值為1,則$\frac{4y-\frac{c}{a}}{x+\frac{c}}$的取值范圍是(  )
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖2.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求二面角B-A1C-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|y=log2(2-x)},B={x|x-a<0},若A∩B=A,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2]B.[-2,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.M是拋物線y2=4x上一點(diǎn),F(xiàn)是焦點(diǎn),且MF=4.過點(diǎn)M作準(zhǔn)線l的垂線,垂足為K,則三角形MFK的面積為4$\sqrt{3}$.該拋物線的焦點(diǎn)與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一個(gè)焦點(diǎn)相同,且雙曲線的離心率為2,那么該雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)滿足f(2x-3)=4x2+2x+1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x+a)-7x,a∈R,試求g(x)在[1,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點(diǎn)(-1,3)且平行于直線x-2y+3=0的直線方程為x-2y+m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.半徑為2cm的半圓紙片做成圓錐放在桌面上,它的最高處距離桌面$\sqrt{3}$cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案