已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的某個焦點為F,雙曲線G:
x2
a2
-
y2
b2
=1
(a,b>0)的某個焦點為F.
(1)請在______上補充條件,使得橢圓的方程為
x2
3
+y2=1
;友情提示:不可以補充形如a=
3
,b=1
之類的條件.
(2)命題一:“已知拋物線y2=2px(p>0)的焦點為F,定點P(m,n)滿足n2-2pm>0,以PF為直徑的圓交y軸于A、B,則直線PA、PB與拋物線相切”.命題中涉及了這么幾個要素:對于任意拋物線P(x,y),定點P,以PF為直徑的圓交F(0,1)軸于A、B,PA、PB與拋物線相切.試類比上述命題分別寫出一個關(guān)于橢圓C和雙曲線G的類似正確的命題;
(3)證明命題一的正確性.
(1)補充一:橢圓的離心率為e=
6
3
,且橢圓的長軸長為2
3

補充二:橢圓過(
3
,0)
(1,
6
3
)

補充三:橢圓上任一點到橢圓兩焦點的距離和為2
3
,且橢圓的一條準(zhǔn)線長為
3
2
2

類似地還可以有很多補充,這里不再贅述,評卷員視實際情況給分,本題滿分(2分)
(2)命題一:已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的某個焦點為F,定點P(m,n)滿足
m2
a2
+
n2
b2
>1
,
以PF為直徑的圓與圓x2+y2=a2交于A、B兩點,則PA、PB與橢圓相切.(5分)
命題二:已知雙曲線G:
x2
a2
-
y2
b2
=1
(a,b>0)的某個焦點為F,定點P(m,n)滿足
m2
a2
-
n2
b2
<1
,
以PF為直徑的圓與圓x2+y2=a2交于A、B兩點,則PA、PB與雙曲線相切.(9分)
(3)證明:以PF為直徑的圓的方程為(x-m)(x-
p
2
)+y(y-n)=0
,
設(shè)A(0,y1),B(0,y2),
y1(y1-n)+
1
2
pm=0
,
直線PA的方程為y-y1=
n-y1
m
x=
p
2y1
x
,即px-2y1y+2y12=0
聯(lián)立
px-2y1y+2
y21
=0
y2=2px

消去x得到y(tǒng)2-4y1y+4y12=0,所以△=0,所以直線PA與拋物線相切.
同理可證PB與拋物線相切.(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標(biāo)原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案