(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是________.
(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設數(shù)學公式,數(shù)學公式.當實數(shù)k為________時k數(shù)學公式與k數(shù)學公式互相垂直.

正六邊形    
分析:(文)利用平面的基本性質即可.
(理)利用向量的共線和由數(shù)量積判斷向量的垂直即可得出.
解答:(文)如圖所示:
正方體的過P、Q、R的截面圖形是正六邊形PMRSNQ.
下面證明:∵P、Q、R、S分別是AB、AD、B1C1的中點,
∴PQ∥BD∥B1D1∥RS,
∴P、Q、S、R四點共面,
取邊BB1的中點M,連接RM并延長交CB的延長線與K點,連接PK.
則△BKM≌△B1RM,∴BK=B1R=BP,
可得Q、P、K三點共線,即M點在平面PQR上,
同理可知N點也在平面PQSR上,
故六點PQNSRM共面.可知其六邊長相等.
(理)∵三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),
=(1,1,0),=(-1,0,2).
∴k=(k-1,k,2),k=(k+2,k,-4).
∵(k)⊥(k),
,
即(k-1)(k+2)+k2-8=0,化為2k2+k-10=0,解得k=2或
故答案為(文)正六邊形,(理)k=2或
點評:熟練掌握平面的基本性質和向量的共線與用數(shù)量積判斷垂直是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文做理不做)正方體ABCD-A1B1C1D1中,p、q、r分別是AB、AD、B1C1的中點.那么正方體的過P、Q、R的截面圖形是
正六邊形
正六邊形

(理做文不做)已知空間三個點A(-2,0,2)、B(-1,1,2)和C(-3,0,4),設
a
=
AB
b
=
AC
.當實數(shù)k為
k=-
5
2
或k=2
k=-
5
2
或k=2
時k
a
+
b
與k
a
-2
b
互相垂直.

查看答案和解析>>

同步練習冊答案