分析 由余弦定理可得a2=b2+c2-2bccos$\frac{π}{6}$,而b2=a2+bc,可得c=($\sqrt{3}$-1)b,a2=(2-$\sqrt{3}$)b2,利用余弦定理得出C,線段BD的長最小,BD⊥AC,則AB=2BD,CD=BD,即可得出結論.
解答 解:由余弦定理可得a2=b2+c2-2bccos$\frac{π}{6}$=b2+c2-$\sqrt{3}$bc,
∵b2=a2+bc,
∴bc+c2-$\sqrt{3}$bc=0,
解得c=($\sqrt{3}$-1)b,
a2=b2-bc=(2-$\sqrt{3}$)b2,
∴解得:cosC=$\frac{\sqrt{2}}{2}$,
∵c<b,
∴C為銳角,C=$\frac{π}{4}$.
當線段BD的長最小,BD⊥AC,則AB=2BD,CD=BD,
∴$\frac{CD}{AB}$=$\frac{1}{2}$
故答案為:$\frac{1}{2}$
點評 本題考查了余弦定理的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com