分析 由AD∥BC,得cos∠CBF=$\frac{\sqrt{2}}{4}$,設(shè)AB=1,由余弦定理得CF=$\sqrt{2}$,由AB⊥AF,AB⊥AD,得∠CDF=90°,DF=1,∠DAF是D-AB-F的平面角,由此能求出θ.
解答 解:∵AD∥BC,AD與BF夾角的余弦值為$\frac{\sqrt{2}}{4}$,
∴cos∠CBF=$\frac{\sqrt{2}}{4}$,
設(shè)AB=1,
由余弦定理得:
CF=$\sqrt{B{F}^{2}+B{C}^{2}-2×BF×BC×cos∠CBF}$
=$\sqrt{2+1-2×\sqrt{2}×1×\frac{\sqrt{2}}{4}}$=$\sqrt{2}$,
∵AB⊥AF,AB⊥AD,AF∩AD=A,∴AB⊥平面ADF,∴AB⊥DF,
∵CD∥AB,∴∠CDF=90°,∴DF=$\sqrt{C{F}^{2}-C{D}^{2}}$=$\sqrt{2-1}$=1,
∴AF=AD=DF=1,∴∠DAF=60°,
∵AB⊥AF,AB⊥AD,∴∠DAF是D-AB-F的平面角.∴二面角D-AB-F是60°.
∴θ=60°.
點(diǎn)評 本題考查二面角的大小的求法,是中檔題,解題要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{FD}$+$\overrightarrow{DA}$=$\overrightarrow{FA}$ | B. | $\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{EF}$=0 | C. | $\overrightarrow{DE}$+$\overrightarrow{DA}$=$\overrightarrow{EC}$ | D. | $\overrightarrow{DA}$+$\overrightarrow{DE}$=$\overrightarrow{DF}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com