(1)6本不同的書全部送給5人,有多少種不同的送書方法?
(2)5本不同的書全部送給6人,每人至多1本,有多少種不同的送書方法?
(3)5本相同的書全部送給6人,每人至多1本,有多少種不同的送書方法?

解:(1)由題意,6本不同的書全部送給5人,每本書都有5種送法,故共有56種不同的送書方法;
(2)5本不同的書全部送給6人,每人至多1本,相等于從6個(gè)不同元素,選出5個(gè)元素的排列,故共有A65=720種不同的送書方法;
(3)因?yàn)闀际且粯拥模跃拖喈?dāng)于6個(gè)人當(dāng)中選出1一個(gè)人不拿書就可以了,所以總共6種分法.
分析:(1)由題意,6本不同的書全部送給5人,每本書都有5種送法,故可求不同的送書方法;
(2)5本不同的書全部送給6人,每人至多1本,相等于從6個(gè)不同元素,選出5個(gè)元素的排列,故可求不同的送書方法;
(3)因?yàn)闀际且粯拥,所以就相?dāng)于6個(gè)人當(dāng)中選出1一個(gè)人不拿書就可以了,所以可求不同的送書方法;
點(diǎn)評:本題以分書為素材,考查排列知識,考查計(jì)數(shù)原理,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:福建省永安一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:022

甲、乙、丙、丁四位同學(xué)去書店購買編號為1,2,3,4,…,10的10本不同的書,為節(jié)約起見,他們約定每人只購買其中5本,再互相傳閱,如果任兩人均不能買全這10本書,任3人均能買全這10本書,其中甲購買數(shù)的號碼是1,2,3,4,5,乙購買書的號碼事5,6,7,8,9,丙購買書的號碼是1,2,3,9,10時(shí),為了滿足上述要求,丁應(yīng)買的書的號碼是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 概率與統(tǒng)計(jì)(4) 題型:022

(文)甲、乙、丙、丁四位同學(xué)去書店購買編號為1,2,3,4,…,10的10本不同的書,為節(jié)約起見,他們約定每人只購買其中5本,再互相傳閱,如果任兩人均不能買全這10本書,任3人均能買全這10本書,其中甲購買數(shù)的號碼是1,2,3,4,5,乙購買書的號碼事5,6,7,8,9,丙購買書的號碼是1,2,3,9,10時(shí),尉繚滿足上述要求,丁應(yīng)買的書的號碼是________.

查看答案和解析>>

同步練習(xí)冊答案