6.已知函數(shù)f(x)=x2-2ax+3在區(qū)間[2,3]上是單調(diào)函數(shù),則a的取值范圍是(-∞,2]∪[3,+∞).

分析 由題意利用二次函數(shù)的性質(zhì),可得二次函數(shù)的對(duì)稱軸與區(qū)間端點(diǎn)的關(guān)系,由此求得實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=x2-2ax+3的對(duì)稱軸為 x=a,且函數(shù)在區(qū)間[2,3]上是單調(diào)函數(shù),
∴a≤2,或 a≥3,故實(shí)數(shù)a的取值范圍是 (-∞,2]∪[3,+∞),
故答案為:(-∞,2]∪[3,+∞).

點(diǎn)評(píng) 本題主要考查二次函數(shù)的性質(zhì),對(duì)稱軸的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對(duì)的邊為a,b,c,f($\frac{A}{2}$)=$\frac{1}{2}$,B=$\frac{π}{4}$,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,
求(1)z=x+2y的最大值;
(2)z=x2+y2-10y+25的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.f(x)是定義在R上的偶函數(shù),且對(duì)任意的a,b∈(-∞,0],當(dāng)a≠b時(shí),都有$\frac{f(a)-f(b)}{a-b}>0$.若f(m+1)<f(2m-1),則實(shí)數(shù)m的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\frac{{4x-4{x^3}}}{{1+2{x^2}+{x^4}}}$在R上的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.z+2$\overline{z}$=9+4i(i為虛數(shù)單位),則|z|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=f(x)是最小正周期為4的偶函數(shù),且在x∈[-2,0]時(shí),f(x)=2x+1,若存在x1,x2,…xn滿足0≤x1<x2<…<xn,且|f(x1)-f(x2)|+|f(x2)-f(x1)|+…+|f(xn-1-f(xn))|=2016,則n+xn的最小值為1513.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將6輛不同的小汽車和2輛不同的卡車駛?cè)肴鐖D所示的10個(gè)車位中的某8個(gè)內(nèi),其中2輛卡車必須停在A與B的位置,那么不同的停車位置安排共有40320種?(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-2x+4,x∈R},則A∩B={(1,2)}.

查看答案和解析>>

同步練習(xí)冊(cè)答案