數(shù)學公式,且sinα+sinγ=sinβ,cosβ+cosγ=cosα,則β-α等于


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:把已知的兩等式分別移項,使關于γ的三角函數(shù)移項到等式右邊,根據(jù)α,β,γ的范圍得到β大于α,然后把化簡后的兩等式兩邊分別平方后,相加并利用同角三角函數(shù)間的基本關系及兩角差的余弦函數(shù)公式化簡后,得到cos(α-β)的值,根據(jù)α與β的范圍及β大于α,得到β-α大于0,利用特殊角的三角函數(shù)值即可求出β-α的值.
解答:sinβ-sinα=sinγ>0,cosα-cosβ=cosγ>0,
則(sinβ-sinα)2+(cosα-cosβ)2=1,且β>α,
即cos(α-β)=(0<α<β<),
則α-β=-
故選C.
點評:此題考查學生靈活運用同角三角函數(shù)間的基本關系及兩角差的余弦函數(shù)公式化簡求值,是一道基礎題.學生做題時應根據(jù)已知條件判斷出β>α,進而得到β-α的值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若
cosA
cosB
=
b
a
且sinC=cosA
(Ⅰ)求角A、B、C的大;
(Ⅱ)設函數(shù)f(x)=sin(2x+A)+cos(2x-
C
2
)
,求函數(shù)f(x)的單調(diào)遞增區(qū)間,并指出它相鄰兩對稱軸間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中內(nèi)角A、B、C的對邊分別為a、b、c,且sin2A+sin2B=sin2C+sinAsinB.
(1)求角C的值;
(2)設函數(shù)f(x)=sin(ωx-
π6
)-cosωx(ω>0)
,且f(x)圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設0<α≤β≤γ,且α+β+γ=π,則min{
sinβ
sinα
,
sinγ
sinβ
}的取值范圍為
[1,
1+
5
2
[1,
1+
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α.β.γ∈(0,
π
2
)
,且sinα+sinγ=sinβ,cosβ+cosγ=cosα,則β-α等于(  )
A、-
π
3
B、
π
6
C、
π
3
D、
π
3
或-
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+
π
3
)
,則下列結論正確的是( 。

查看答案和解析>>

同步練習冊答案