x2 |
8 |
y2 |
4 |
x2 |
8 |
y2 |
4 |
x2 |
b2+4 |
y2 |
b2 |
4 |
b2+4 |
y2 |
b2 |
b2 | ||
|
b2 | ||
|
b2+4 |
| ||
2 |
b |
2 |
| ||||
2 |
| ||||
|
x2 |
8 |
y2 |
4 |
x2 |
8 |
y2 |
4 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年湖北卷理)如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<.
其中正確式子的序號(hào)是
A.①③ B.②③ C.①④ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<。
其中正確式子的序號(hào)是
A.①③ B.②③ C.①④ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<。
其中正確式子的序號(hào)是
A.①③ B.②③ C.①④ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
簡(jiǎn)化的北京奧運(yùn)會(huì)主體育場(chǎng) “鳥巢”的鋼結(jié)構(gòu)俯視圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,外層橢圓頂點(diǎn)向內(nèi)層橢圓引切線.設(shè)內(nèi)層橢圓方程為,則外層橢 圓方程可設(shè)為.若與的斜率之積為,則橢圓的離心率為 ( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷) 題型:選擇題
如圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<。
其中正確式子的序號(hào)是
A.①③ B.②③ C.①④ D.②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com