已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)寫出數(shù)列{an}的前三項a1,a2,a3;
(Ⅱ)求證:數(shù)列{an-2n+1}為等比數(shù)列;
(Ⅲ)求Sn.
分析:(1)由a1=S1,可求a1,再由a2=S2-S1,a3=S3-S2,可分別求出a2,a3.
(2)要證數(shù)列{an-2n+1}為等比數(shù)列,只需證它的后一項與前一項的比是常數(shù)即可.
(3)由(Ⅱ)可知數(shù)列{an-2n+1}為等比數(shù)列,求出數(shù)列{an}的通項公式,進而求前n項和Sn.
解答:解:(Ⅰ)由S
n=2a
n+n
2-4n,
當n=1時,a
1=2a
1+1-4,可得a
1=3.a(chǎn)
n+1=S
n+1-S
n=2a
n+1+(n+1)
2-4(n+1)-2a
n-n
2+4n,
可得a
n+1=2a
n-2n+3.
可得a
2=7,a
3=13.
(Ⅱ)由a
n+1=2a
n-2n+3可得,
===2.
又a
1-2×1+1=2.
所以數(shù)列{a
n-2n+1}是首項為2,公比為2的等比數(shù)列.
(Ⅲ)由(Ⅱ)可得,a
n-2n+1=2
n.
所以a
n=2n-1+2
n.
又S
n=2a
n+n
2-4n,
可得S
n=2
n+1+n
2-2.
點評:本題考查了等比數(shù)列的證明,并根據(jù)數(shù)列通項公式求前n項和,屬于常規(guī)題,掌握解法.