一個(gè)質(zhì)地均勻的正四面體(側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等的正三棱錐)骰子四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字,拋擲這顆正四面體骰子,觀察拋擲后能看到的數(shù)字.若連續(xù)拋擲兩次,兩次朝下面上的數(shù)字之積大于6的概率是 ________.


分析:本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4種結(jié)果,滿足條件的事件是兩次朝下面上的數(shù)字之積大于6,可以列舉出這種事件,共有6種結(jié)果,根據(jù)古典概型概率公式得到結(jié)果.
解答:由題意知本題是一個(gè)古典概型,
試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4=16種結(jié)果,
滿足條件的事件是兩次朝下面上的數(shù)字之積大于6,可以列舉出這種事件,
(2,4)(3,3)(3,4)(4,3)(4,2)(4,4)共有6種結(jié)果,
根據(jù)古典概型概率公式得到P==,
故答案為:
點(diǎn)評(píng):本題主要考查古典概型,解決古典概型問題時(shí)最有效的工具是列舉,大綱中要求能通過列舉解決古典概型問題,也有一些題目需要借助于排列組合來計(jì)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)質(zhì)地均勻的正四面體(側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等的正三棱錐)骰子,四個(gè)面上標(biāo)有1、2、3、4這四個(gè)數(shù)字,拋擲這顆正四面體骰子,觀察拋擲后能看到的數(shù)字.
(1)若拋擲一次,求能看到的三個(gè)面上數(shù)字之和大于6的概率;
(2)若拋擲兩次,求兩次朝下面上的數(shù)字之積大于7的概率;
(3)若拋擲兩次,以第一次朝下面上的數(shù)字為橫坐標(biāo)為a,第二次朝下面上的數(shù)字為縱坐標(biāo)為b,求點(diǎn)(a,b)落在直線x-y=1下方的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)質(zhì)地均勻的正四面體玩具的四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字.若連續(xù)兩次拋擲這個(gè)玩具,則兩次向下的面上的數(shù)字之積為偶數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)質(zhì)地均勻的正四面體骰子四個(gè)面上分別標(biāo)有1,2,3,4四個(gè)數(shù)字,若連續(xù)拋擲這顆骰子兩次,其著地的一面上的數(shù)字之積大于6的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把圓周4等分,A是其中一個(gè)分點(diǎn),動(dòng)點(diǎn)P在四個(gè)分點(diǎn)上按逆時(shí)針方向前進(jìn).投擲一個(gè)質(zhì)地均勻的正四面體,它的四個(gè)面上分別寫著1,2,3,4四個(gè)數(shù)字,P從A點(diǎn)出發(fā),按照正四面體底面上所投擲的點(diǎn)數(shù)前進(jìn)(數(shù)字為n就前進(jìn)n個(gè)分點(diǎn)),轉(zhuǎn)一周之前繼續(xù)投擲.
(Ⅰ)求點(diǎn)P恰好返回到A點(diǎn)的概率:
(Ⅱ)在點(diǎn)P轉(zhuǎn)一周能返回A點(diǎn)的所有結(jié)果中,用隨機(jī)變量ζ表示點(diǎn)P返回A點(diǎn)時(shí)的投擲次數(shù),求ζ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鎮(zhèn)江一模)有一個(gè)質(zhì)地均勻的正四面體,它的四個(gè)面上分別標(biāo)有1,2,3,4這四個(gè)數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為
3
64
3
64

查看答案和解析>>

同步練習(xí)冊(cè)答案