【題目】為了得到函數(shù) 的圖象,只需把函數(shù)y=sin3x的圖象( )
A.向左平移
B.向左平移
C.向右平移
D.向右平移
【答案】B
【解析】解:∵函數(shù)y=sin3x y=sin3(x+ )=sin(3x+ ), ∴要得到y(tǒng)=sin(3x+ )的圖象,只需把函數(shù)y=sin3x的圖象向左平移 個單位.
故選B.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積(其中∠BAC=30°)及其體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E為PD中點.
(1)求證:CE∥平面PAB;
(2)求直線CE與平面PAD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A.如圖所示, 是園內(nèi)兩條弦和的交點,過延長線上一點作圓的切線, 為切點,已知求證:
B.已知矩陣 , .求矩陣,使得
C.在平面直角坐標系中,直線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,已知直線與曲線相交于兩點,求線段的長.
D.已知都是正數(shù),且,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且點 在該橢圓上
(1)求橢圓C的方程;
(2)過橢圓C的左焦點F1的直線l與橢圓相交于A,B兩點,若△AOB的面積為 ,求圓心在原點O且與直線l相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=anlog an , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1 , BC的中點.
(1)求證:AB⊥C1F;
(2)求證:C1F∥平面ABE;
(3)求三棱錐E﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn(n∈N*),a3=5,S10=100.
(1)求數(shù)列{an}的通項公式;
(2)設bn=2 +2n求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com