【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

【答案】(1);(2)見解析

【解析】

(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形,設(shè),,線段的中點為,根據(jù)韋達定理求出點的坐標,再根據(jù),,即可求出的值,可得點的坐標.

(1)面積的最大值為,則:

,解得:,

橢圓的方程為:

(2)假設(shè)軸上存在點,是以為直角頂點的等腰直角三角形

設(shè),,線段的中點為

,消去可得:

,解得:

,

,

依題意有,

可得:,可得:

可得:

,

代入上式化簡可得:

則:,解得:

時,點滿足題意;當時,點滿足題意

軸上存在點,使得是以為直角頂點的等腰直角三角形

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的圖像在處的切線方程;

2)求函數(shù)的極大值;

3)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCD,,,,將 沿折起,使平面平面,得到幾何體,如圖2所示.

1)求證:平面;

2)求二面角D-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家具公司生產(chǎn)甲、乙兩種書柜,制柜需先制白胚再油漆,每種柜的制造白胚工時數(shù)、油漆工時數(shù)的有關(guān)數(shù)據(jù)如下:

工藝要求

產(chǎn)品甲

產(chǎn)品乙

生產(chǎn)能力(工時/天)

制白胚工時數(shù)

6

12

120

油漆工時數(shù)

8

4

64

單位利潤

20

24

則該公司合理安排這兩種產(chǎn)品的生產(chǎn),每天可獲得的最大利潤為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知AB為橢圓)和雙曲線的公共頂點,P、Q分別為雙曲線和橢圓上不同于A、B的動點,且),設(shè)APBP、AQBQ的斜率分別為、、.

1)若,求的值(用a、b的代數(shù)式表示);

2)求證:

3)設(shè)、分別為橢圓和雙曲線的右焦點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)·均輸》中有如下問題:今有五人分十錢,令上二人所得與下三人等,問各得幾何.其意思為已知甲、乙、丙、丁、戊五人分10錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?是古代的一種重量單位).這個問題中,甲所得為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為

1)求橢圓的方程;

2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央、國務(wù)院關(guān)于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調(diào)查.并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標.將指標按照,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶".已知此次調(diào)查中甲村的“絕對貧困戶”占甲村貧困戶的.

1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與村落有關(guān):

甲村

乙村

總計

絕對貧困戶

相對貧困戶

總計

2)某干部決定在這兩村貧困指標處于的貧困戶中,隨機選取戶進行幫扶,用表示所選戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:

表一

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù),繪制了如下圖所示的散點圖.

(1)根據(jù)散點圖判斷,在推廣期內(nèi),,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求關(guān)于的回歸方程,并預測活動推出第8天使用掃碼支付的人次;

(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如表2

表2

支付方式

現(xiàn)金

乘車卡

掃碼

比例

10%

60%

30%

已知該線路公交車票價為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計一名乘客一次乘車的平均費用.

參考數(shù)據(jù):

62.14

1.54

2535

50.12

3.47

其中,

參考公式:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

同步練習冊答案