精英家教網 > 高中數學 > 題目詳情

已知為定義在上的奇函數,當時,;

(1)求上的解析式;

(2)試判斷函數在區(qū)間上的單調性,并給出證明.

 

【答案】

(1)  ;

 (2)函數在區(qū)間上為單調減函數.證明見解析。

【解析】(1)因為為定義在上的奇函數,所以;當時,利用,可得;就得到上的解析式;(2)先分析單調性,再利用定義按下面過程:取值,作差,變形,定號,得單調性.

(1)當時,

所以,

    6分

 (2)函數在區(qū)間上為單調減函數.

證明如下:

是區(qū)間上的任意兩個實數,且,

8分

   ,

因為,

所以   即.

所以函數在區(qū)間上為單調減函數.    12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數,且對于任意實數a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)問:是否存在實數a,b(a≠b),使f(x)在x∈[a,b]時,函數值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:蚌埠二中2008屆高三12月份月考數學試題(理) 題型:044

已知定義在實數集合R上的奇函數f(x)有最小正周期為2,且當x∈(0,1)時,

(1)求函f(x)在[-1,1]上的解析式;

(2)判斷f(x)在(0,1)上的單調性;

(3)當λ取何值時,方程f(x)=λ在[-1,1]上有實數解?

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知f(x)是定義在R上的不恒為零的函數,且對于任意實數a,b都有f(a•b)=af(b)+bf(a),則


  1. A.
    f(x)是奇函數,但不是偶函數
  2. B.
    f(x)是偶函數,但不是奇函數
  3. C.
    f(x)既是奇函數,又是偶函數
  4. D.
    f(x)既非奇函數,又非偶函

查看答案和解析>>

科目:高中數學 來源: 題型:

已知是定義在上的不恒為零的函數,且對于任意實數都有, 則

(A)是奇函數,但不是偶函數         (B)是偶函數,但不是奇函數

(C)既是奇函數,又是偶函數         (D)既非奇函數,又非偶函

查看答案和解析>>

同步練習冊答案