下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A、y=e-x
B、y=x3
C、y=lnx
D、y=|x|
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)單調(diào)性的性質(zhì)分別進(jìn)行判斷即可得到結(jié)論.
解答: 解:對(duì)于選項(xiàng)A,y=ex為增函數(shù),y=-x為減函數(shù),故y=e-x為減函數(shù),
對(duì)于選項(xiàng)B,y′=3x2>0,故y=x3為增函數(shù),
對(duì)于選項(xiàng)C,函數(shù)的定義域?yàn)閤>0,不為R,
對(duì)于選項(xiàng)D,函數(shù)y=|x|為偶函數(shù),在(-∞.0)上單調(diào)遞減,在(0,∞)上單調(diào)遞增,
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的判斷,要求熟練掌握常見函數(shù)單調(diào)性的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=1與x=2是函數(shù)f(x)=alnx+bx2+x的兩個(gè)極值點(diǎn).則常數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線分別交于A、B兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),若雙曲線的離心率為2,則三角形AOB的面積S△AOB=( 。
A、
3
B、
9
3
16
C、
3
4
D、4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列函數(shù)中,最小值是2的是( 。
A、y=
x
2
+
2
x
B、y=
x+2
x+1
(x>0)
C、y=sinx+
1
sinx
,x∈(0,
π
2
D、y=7x+7-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=-
1
an+1
,則a2014等于( 。
A、2
B、-
1
3
C、-
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c滿足a>b>c,且a+b+c=0,那么下列選項(xiàng)中不一定成立的是( 。
A、ab>ac
B、c(b-a)<0
C、cb2<ab2
D、ac(a-c)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),且x<0時(shí)2xf(x)+x2f′(x)<0恒成立,則f(1),2f(
2
),4f(2)的大小關(guān)系為( 。
A、4f(2)<2f(
2
)<f(1)
B、4f(2)<f(1)<2f(
2
C、f(1)<4f(2)<2f(
2
)
D、f(1)<2f(
2
)<4f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-2
的定義域?yàn)榧螦,集合B={x|x-a+1<0},若A∩B≠∅,則a的取值范圍是(  )
A、a>3B、a≥3
C、a<3D、a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)lnx+
1
x
+2ax
(1)當(dāng)a=0,求f(x)的極值
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案