設x、y、z∈R,且5x=9y=225z,則( 。
分析:令5x=9y=225z=t,則x=log5t,y=log9t,z=log225t,據(jù)選項驗證可得答案.
解答:解:令5x=9y=225z=t,
則x=log5t,y=log9t,z=log225t,
1
x
=logt5
,
1
y
=logt9
,
1
z
=logt225
,
2
x
+
1
y
=2logt5+logt9=logt25+logt9=logt225=
1
z
,
故選C.
點評:本題考查對數(shù)的運算性質,屬基礎題,熟記有關運算法則是解題關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x,y,z∈R+,且3x=4y=6z
(1)求證:
1
z
-
1
x
=
1
2y
;  
(2)比較3x,4y,6z的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖北)設x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=
14
,則x+y+z=
3
14
7
3
14
7

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年廣東省高一上學期第二次月考試題數(shù)學 題型:解答題

(本小題滿分14分)

x,y,z∈R+,且3x=4y=6z.

(1)求證:;      (2)比較3x,4y,6z的大小.

 

查看答案和解析>>

同步練習冊答案