已知: 圓M: (x-3)2+(y-2)2=2, 直線l: x+y-3=0, 點P(2,1), 則有

[  ]

A.P∈l, P1.gif (864 bytes)M  B.P1.gif (864 bytes)l, P∈M

C.P∈l, P∈M  D.P1.gif (864 bytes)l, P1.gif (864 bytes)M

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M過定點P(0,m)(m>0),且與定直線l1:y=-m相切,
動圓圓心M的軌跡為C,直線l2過點P交曲線C于A,B兩點.
(Ⅰ)求曲線C的方程;
(Ⅱ)若l2交x軸于點S,且
|SP|
|SA|
+
|SP|
|SB|
=3
,求l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M過定點F(2,0),且與直線x=-2相切,動圓圓心M的軌跡為曲線C
(1)求曲線C的方程
(2)若過F(2,0)且斜率為1的直線與曲線C相交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M過定點F(0,-
2
),且與直線y=
2
相切,橢圓N的對稱軸為坐標軸,一個焦點為F,點A(1,
2
)在橢圓N上.
(1)求動圓圓心M的軌跡Γ的方程及橢圓N的方程;
(2)若動直線l與軌跡Γ在x=-4處的切線平行,且直線l與橢圓N交于B,C兩點,試求當△ABC面積取到最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M經(jīng)過點A(3,0),且與直線l:x=-3相切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知動圓M過定點F(0,1)且與x軸相切,點F關(guān)于圓心M的對稱點為F′,動點F′的軌跡為C.
(1)求曲線C的方程;
(2)設(shè)A(x0,y0)是曲線C上的一個定點,過點A任意作兩條傾斜角互補的直線,分別與曲線C相交于另外兩點P、Q.
①證明:直線PQ的斜率為定值;
②記曲線C位于P、Q兩點之間的那一段為l.若點B在l上,且點B到直線PQ的距離最大,求點B的坐標.

查看答案和解析>>

同步練習(xí)冊答案