17.彈簧所受的壓縮力F(單位:牛)與縮短的距離L(單位:米)按胡克定律F=KL計(jì)算,如果100N的力能使彈簧壓縮10cm,那么把彈簧從平衡位置壓縮到20cm(在彈性限度內(nèi)),所做的功為( 。
A.20( J)B.200( J)C.10( J)D.5( J)

分析 先求出F(x)的表達(dá)式,再根據(jù)定積分的物理意義即可求出.

解答 解:∵F=100N,x=10cm=0.1m,
∴k=1000,
∴W=${∫}_{0}^{0.2}$1000xdx=500x2|${|}_{0}^{0.2}$=20J,
故選:A.

點(diǎn)評(píng) 本題考查了定積分在物理中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)是奇函數(shù)的是( 。
A.f(x)=x2+2|x|B.f(x)=x•sinxC.f(x)=2x+2-xD.$f(x)=\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.當(dāng)x∈R,|x|<1時(shí),有如下表述式:1+x+x2+…+xn+…=$\frac{1}{1-{x}^{n}}$,
兩邊同時(shí)積分得:
${∫}_{0}^{\frac{1}{2}}$1dx+${∫}_{0}^{\frac{1}{2}}$xdx+${∫}_{0}^{\frac{1}{2}}$x2dx+…+${∫}_{0}^{\frac{1}{2}}$xndx+…=${∫}_{0}^{\frac{1}{2}}$$\frac{1}{1-x}$dx
從而得到如下等式:1×$\frac{1}{3}$+$\frac{1}{2}$×($\frac{1}{3}$)2+$\frac{1}{3}$×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$×($\frac{1}{3}$)n+1+…=ln3-ln2.
請(qǐng)根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計(jì)算:
Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)≥0對(duì)x∈[0,+∞)恒成立,則下列不等式一定成立的是( 。
A.f(1)<2ef(2)B.ef(1)<f(2)C.f(1)<0D.ef(e)<2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在邊長(zhǎng)為1的等邊△ABC中,O為邊AC的中點(diǎn),BO為邊AC上的中線,$\overrightarrow{BG}$=2$\overrightarrow{GO}$,設(shè)$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),則|$\overrightarrow{AD}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知α、β、γ是三個(gè)平面,且α∩β=c,β∩γ=a,α∩γ=b,且a∩b=O.求證:a、b、c三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.參數(shù)方程$\left\{\begin{array}{l}x=\sqrt{t}+1\\ y=1-2\sqrt{t}\end{array}$(t為參數(shù))表示的曲線不經(jīng)過(guò)點(diǎn)( 。
A.(0,3)B.(1,1)C.$({\frac{3}{2},0})$D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+an=2n,求an以及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知下列四個(gè)命題:
①函數(shù)f(x)=2x滿足:對(duì)任意x1,x2∈R且x1≠x2都有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
②函數(shù)$f(x)={log_2}(x+\sqrt{1+{x^2}})$,g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x-1)=-f(x+1),且f(1)=2,則f(7)=-2
④設(shè)x1,x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1.
其中正確命題的序號(hào)是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案