【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且B是A,C的等差中項(xiàng).
(1)若,求邊c的值;
(2)設(shè)t=sinAsinC,求t的取值范圍.
【答案】(1).(2)
【解析】
(1)由已知利用等差中項(xiàng)的性質(zhì),三角形內(nèi)角和定理可求B的值,進(jìn)而根據(jù)余弦定理可得c2﹣3c﹣4=0,解方程可得c的值.
(2)由已知利用三角函數(shù)恒等變換的應(yīng)用,可求t= sin(2A﹣,根據(jù)正弦函數(shù)的性質(zhì)可求其取值范圍.
(1)∵B是A,C的等差中項(xiàng),
∴2B=A+C,
∵A+B+C=π,
∴B=,
∵b=,a=3,又b2=a2+c2﹣2accosB,
∴c2﹣3c﹣4=0,
解得c=4,或c=﹣1(舍去),故c=4.
(2)∵A+C=,
∴t=sinAsin(﹣A)=sinA(cosA+sinA)= sin(2A﹣,
∵A∈(0,),2A﹣∈(﹣),
sin(2A﹣)∈(,1],
故t的取值范圍為(0,].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某娛樂節(jié)目參賽選手分初賽培訓(xùn)、復(fù)賽三個(gè)階段選拔,將50位參選手的初賽成績(jī)(總分150分)分成[90,100),[100,110),[110,120),[120,130),[130,140)5組進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分析直方圖,估算這50個(gè)選手初賽成績(jī)的平均分,若節(jié)日組規(guī)定成績(jī)大于或等于120分的選手可獲得節(jié)目組組織的培訓(xùn)資格,120分以下(不包括120)的則被淘汰,求這50個(gè)人中獲得培訓(xùn)資格的人數(shù);
(2)節(jié)目組從獲得培訓(xùn)資格的人員中選拔部分人員進(jìn)入復(fù)賽.為增加節(jié)目的娛樂性,節(jié)目組提供了以下兩種進(jìn)入復(fù)賽的方式(每位選手只能選擇其中一種)
第一種方式:利用分層抽樣的方法抽取6名選手參加復(fù)賽;
第二種方式:每人最多有5次答題機(jī)會(huì),累計(jì)答對(duì)3題或答錯(cuò)3題終止答題,答對(duì)3題可參加復(fù)賽
①已知甲的初賽成績(jī)?cè)?/span>[120,130)內(nèi),他答對(duì)每一個(gè)問題的概率為,并且互相之間沒有影響甲要想?yún)⒓訌?fù)賽,選擇那種方式更有利?
②若甲選擇第二種方式,求他在答題過程中答題個(gè)數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月24日國(guó)家統(tǒng)計(jì)局在慶祝中華人民共和國(guó)成立70周年活動(dòng)新聞中心舉辦新聞發(fā)布會(huì)指出,1952年~2018年,我國(guó)GDP查679.1億元躍升至90.03萬億元,實(shí)際增長(zhǎng)174倍;人均GDP從119元提高到6.46萬元,實(shí)際增長(zhǎng)70倍.全國(guó)各族人民,砥礪奮進(jìn),頑強(qiáng)拼搏,實(shí)現(xiàn)了經(jīng)濟(jì)社會(huì)的跨越式發(fā)展.如圖是全國(guó)2010年至2018年GDP總量(萬億元)的折線圖.注:年份代碼1~9分別對(duì)應(yīng)年份2010~2018.
(1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),并預(yù)測(cè)2021年全國(guó)GDP的總量.
附注:參考數(shù)據(jù):.
參考公式:相關(guān)系數(shù);
回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:其中所有假命題的序號(hào)是_______.
①命題“,”的否定是“,;
②將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像;
③冪函數(shù)在上是減函數(shù),則實(shí)數(shù);
④函數(shù)有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)
(1)若在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若有兩個(gè)不同的極值點(diǎn),記過點(diǎn),的直線的斜率為k,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和到直線的距離之比為,設(shè)動(dòng)點(diǎn)的軌跡為曲線,過點(diǎn)作垂直于軸的直線與曲線相交于兩點(diǎn),直線與曲線交于兩點(diǎn),與相交于一點(diǎn)(交點(diǎn)位于線段上,且與不重合).
(1)求曲線的方程;
(2)當(dāng)直線與圓相切時(shí),四邊形的面積是否有最大值?若有,求出其最大值及對(duì)應(yīng)的直線的方程;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.
(Ⅰ)若的面積等于,求;
(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對(duì)稱,問:橢圓上是否存在點(diǎn)(點(diǎn)在一象限),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型歌手選秀活動(dòng),過程分為初賽、復(fù)賽和決賽.經(jīng)初賽進(jìn)入復(fù)賽的40名選手被平均分成甲、乙兩個(gè)班,由組委會(huì)聘請(qǐng)兩位導(dǎo)師各負(fù)責(zé)一個(gè)班進(jìn)行聲樂培訓(xùn).下圖是根據(jù)這40名選手參加復(fù)賽時(shí)獲得的100名大眾評(píng)審的支持票數(shù)制成的莖葉圖.賽制規(guī)定:參加復(fù)賽的40名選手中,獲得的支持票數(shù)不低于85票的可進(jìn)入決賽,其中票數(shù)不低于95票的選手在決賽時(shí)擁有“優(yōu)先挑戰(zhàn)權(quán)”.
(1)從進(jìn)入決賽的選手中隨機(jī)抽出2名,X表示其中擁有“優(yōu)先挑戰(zhàn)權(quán)”的人數(shù),求X的分布列和數(shù)學(xué)期望;
(2)請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為進(jìn)入決賽與選擇的導(dǎo)師有關(guān)?
甲班 | 乙班 | 合計(jì) | |
進(jìn)入決賽 | |||
未進(jìn)入決賽 | |||
合計(jì) |
下面的臨界值表僅供參考:
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com