【題目】1)試比較的大小.

2)若函數(shù)的兩個(gè)零點(diǎn)分別為,,

①求的取值范圍;

②證明:.

【答案】1)答案見解析.(2)①.②證明見解析

【解析】

1)設(shè),然后利用導(dǎo)數(shù)求出的單調(diào)性,然后結(jié)合函數(shù)值即可比較出大。

2)①利用導(dǎo)數(shù)求出的最小值即可;

②不妨設(shè),則,結(jié)合(1)中結(jié)論可推出,,然后可得,將其分解因式可證明.

1)設(shè),

,

上單調(diào)遞減.

因?yàn)?/span>,

所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.

即當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),.

2)①因?yàn)?/span>,所以,

,得;令,得,

上單調(diào)遞減,在上單調(diào)遞增,

.

因?yàn)?/span>有兩個(gè)零點(diǎn),所以,即.

因?yàn)?/span>,

所以當(dāng)有兩個(gè)零點(diǎn)時(shí),的取值范圍為.

②證明:因?yàn)?/span>的兩個(gè)零點(diǎn),

不妨設(shè),則.

因?yàn)?/span>,,

所以,,

,

,即,

.

因?yàn)?/span>,所以,則,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時(shí),對任意,不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求ab的值,并求使y取得最大值和最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從集市上買回來的蔬菜仍存有殘留農(nóng)藥,食用時(shí)需要清洗數(shù)次,統(tǒng)計(jì)表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).

x

1

2

3

4

5

y

4.5

2.2

1.4

1.3

0.6

1)在如圖的坐標(biāo)系中,描出散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說明理由)

2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;

表中,

3

2

0.12

10

0.09

-8.7

0.9

3)對所求的回歸方程進(jìn)行殘差分析.

附:①線性回歸方程中系數(shù)計(jì)算公式分別為,;

,說明模擬效果非常好;

,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形為平行四邊形,三角形為等邊三角形,已知,.

1)求證:

2)求直線與面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對首次參加體檢的人員,按200元/次收費(fèi),并注冊成為會(huì)員,對會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

該休檢中心從所有會(huì)員中隨機(jī)選取了100位對他們在本中心參加體檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如表:

假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤;

2)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再從這5人中抽取2人,每人發(fā)放現(xiàn)金200.5表示體檢3次的會(huì)員所得現(xiàn)金和,求的分布列及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】原始的蚊香出現(xiàn)在宋代.根據(jù)宋代冒蘇軾之名編寫的《格物粗談》記載:端午時(shí),貯浮萍,陰干,加雄黃,作紙纏香,燒之,能祛蚊蟲.”如圖,為某校數(shù)學(xué)興趣小組用數(shù)學(xué)軟件制作的螺旋蚊香,畫法如下:在水平直線上取長度為1的線段,做一個(gè)等邊三角形,然后以點(diǎn)為圓心,為半徑逆時(shí)針畫圓弧,交線段的延長線于點(diǎn),再以點(diǎn)為圓心,為半徑逆時(shí)針畫圓弧,交線段的延長線于點(diǎn),以此類推,當(dāng)?shù)玫降?/span>螺旋蚊香與直線恰有個(gè)交點(diǎn)時(shí),螺旋蚊香的總長度的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)字0,12,34組成沒有重復(fù)數(shù)字且至少有兩個(gè)數(shù)字是偶數(shù)的四位數(shù),則這樣的四位數(shù)的個(gè)數(shù)為( )

A.64B.72C.96D.144

查看答案和解析>>

同步練習(xí)冊答案