(2008•寶山區(qū)一模)方程cos(x+
π
6
)cos(x+
π
3
)-sin(x+
π
6
)sin(x+
π
3
)=1
在(0,π)上的解集是
{
4
}
{
4
}
分析:觀察方程左邊,發(fā)現(xiàn)滿足兩角和的余弦函數(shù)公式,故用此公式進(jìn)行化簡(jiǎn),然后再利用誘導(dǎo)公式變形,得到sin2x的值,由x的范圍,得到2x的范圍,利用特殊角的三角函數(shù)值即可求出x的值,得到原方程的解集.
解答:解:cos(x+
π
6
)cos(x+
π
3
)-sin(x+
π
6
)sin(x+
π
3
)=1

cos[(x+
π
6
)+(x+
π
3
)]=1,
cos(2x+
π
2
)=1,
-sin2x=1,
sin2x=-1,
由x∈(0,π),得到2x∈(0,2π),
∴2x=
2
,即x=
4
,
則原方程的解集是{
4
}.
故答案為:{
4
}
點(diǎn)評(píng):此題考查了兩角和與差的余弦函數(shù)公式,誘導(dǎo)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練運(yùn)用公式把方程進(jìn)行化簡(jiǎn)到sin2x=-1是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)一模)已知直線l與拋物線y2=4x相交于A(x1,y1),B(x2,y2)兩個(gè)不同的點(diǎn),那么“直線l經(jīng)過(guò)拋物線y2=4x的焦點(diǎn)”是“x1x2=1”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)一模)如圖,已知正△A1B1C1的邊長(zhǎng)是1,面積是P1,取△A1B1C1各邊的中點(diǎn)A2,B2,C2,△A2B2C2的面積為P2,再取△A2B2C2各邊的中點(diǎn)A3,B3,C3,△A3B3C3的面積為P3,依此類推.記Sn=P1+P2+…+Pn,則
lim
n→∞
Sn
=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)一模)如果執(zhí)行下面的程序框圖,那么輸出的S=
10000
10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)一模)函數(shù)是這樣定義的:對(duì)于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x-m|<
1
2
時(shí),有f(x)=m.
(1)求函數(shù)的定義域D,并畫出它在x∈D∩[0,4]上的圖象;
(2)若數(shù)列an=2+10•(
2
5
)n
,記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn
(3)若等比數(shù)列{bn}的首項(xiàng)是b1=1,公比為q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)一模)過(guò)點(diǎn)A(2,-3),且法向量是
m
=(4,-3)
的直線的點(diǎn)方向式方程是
x-2
3
=
y+3
4
x-2
3
=
y+3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案