精英家教網 > 高中數學 > 題目詳情
10.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{{9\sqrt{3}}}{4}$

分析 由三視圖可知,直觀圖是兩個三棱柱的組合體,底面分別是邊長為2,1的等邊三角形,高分別為2,1,利用棱柱的體積公式求出幾何體的體積.

解答 解:由三視圖可知,直觀圖是兩個三棱柱的組合體,底面分別是邊長為2,1的等邊三角形,高分別為2,1,
∴幾何體的體積為$\frac{\sqrt{3}}{4}×4×2+\frac{\sqrt{3}}{4}×1×1$=$\frac{{9\sqrt{3}}}{4}$,
故答案為$\frac{{9\sqrt{3}}}{4}$.

點評 本題考查了棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.函數給出下列說法,其中正確命題的序號為①②④.
(1)命題“若α=$\frac{13π}{6}$,則cosα=$\frac{\sqrt{3}}{2}$”的逆否命題;
(2)命題p:?x0∈R,使sinx0>1,則¬p:?x∈R,sinx≤1;
(3)“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函數若y=sin(2x+φ)為偶函數”的充要條件;
(4)命題p:“$?x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{2}$”,命題q:“在△ABC中,若使sinA>sinB,則A>B”,那么命題 (?p)∧q為真命題.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow$=(5$\sqrt{3}$cosx,cosx),函數f(x)=$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow{a}$|2-$\frac{7}{2}$.
(1)求函數f(x)的最小正周期;
(2)若x∈($\frac{2π}{3}$,$\frac{11π}{12}$)時,f(x)=-3,求cos2x的值;
(3)若cosx≥$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x)=m有且僅有一個實根,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=lg$\frac{1+ax}{1-x}$(a>0)為奇函數,函數g(x)=$\frac{2}{{x}^{2}}$+b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,討論方徎g(x)=ln|x|實數根的個數;
(Ⅲ)當x∈[$\frac{1}{3}$,$\frac{1}{2}$]時,關于x的不等式f(1-x)≤lgg(x)有解,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$-2.
(1)求函數f(x)的最小正周期和單調遞減區(qū)間;
(2)已知a,b,c分別為△ABC內角A,B,C的對邊,其中A為銳角,a=$\sqrt{3}$,c=1,且f(A)=1,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.過點A(1,2)且平行于直線3x+2y-1=0的直線方程為(  )
A.2x-3y+4=0B.3x-2y+1=0C.2x+3y-8=0D.3x+2y-7=0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知圓x2+y2=4,則圓上到直線3x-4y+5=0的距離為1的點個數為3.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知兩定點A(-2,0)和B(2,0),動點P(x,y)在直線l:y=x+4上移動,橢圓C以A,B為焦點且經過點P,則橢圓C的離心率的最大值為(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.月餅是久負盛名的中國傳統(tǒng)小吃之一,月餅圓又圓,又是合家分吃,象征著團圓和睦,在中秋這一天是必食之品.某食品公司在中秋佳節(jié)推出中式月餅,港式月餅,歐式月餅三個系列,該食品公司對其全部42名內部員工實行優(yōu)惠,對中秋節(jié)當天員工購買公司“月餅”情況進行統(tǒng)計,結果如下:(所有員工都參加了購買,且只購買一種)
其中購買歐式月餅的40歲以下員工占全部員工的三分之一.
  中式月餅 港式月餅 歐式月餅
 40歲以上(含40歲)員工人數 10 y 4
 40歲以下員工人數 2 6 x
(1)求x,y的值;
(2)能否在犯錯誤的概率不超過1%的情況下認為員工購買“歐式月餅”與年齡有關?
(3)已知甲、乙兩位員工購買的是“歐式月餅”,依照購買的三個系列分類,按分層抽樣的方法從員工中隨機抽取7人,記甲、乙2人中被抽取到的人數為X,求X的分布列及數學期望.
參考數據:
P(K2≥k0)  0.10.01 0.01 
 k0 2.706 6.635 10.828

查看答案和解析>>

同步練習冊答案