分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.
解答 解:(1)∵tanθ=2,∴$\frac{sinα+\sqrt{2}cosα}{sinα-\sqrt{2}cosα}$=$\frac{tanα+\sqrt{2}}{tanα-\sqrt{2}}$=$\frac{2+\sqrt{2}}{2-\sqrt{2}}$=3+2$\sqrt{2}$.
(2)sin2θ+sin θcos θ-2cos2θ=$\frac{{sin}^{2}θ+sinθcosθ-{2cos}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{{tan}^{2}θ+tanθ-2}{{tan}^{2}θ+1}$=$\frac{4+2-2}{4+1}$=$\frac{4}{5}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 84 | B. | 63 | C. | 42 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({±\sqrt{3},0})$ | B. | $({0,±\sqrt{3}})$ | C. | $({±\sqrt{6},0})$ | D. | $({0,±\sqrt{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sinx | B. | y=-|x+1| | C. | $y=ln\frac{2-x}{x+2}$ | D. | $y=\frac{1}{2}({2^x}+{2^{-x}})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com