A. | $\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{1{2}^{2}}$=1 | B. | $\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{{5}^{2}}$=1 | ||
C. | $\frac{{x}^{2}}{{3}^{2}}$-$\frac{{y}^{2}}{{4}^{2}}$=1 | D. | $\frac{{x}^{2}}{{4}^{2}}$-$\frac{{y}^{2}}{{3}^{2}}$=1 |
分析 求出橢圓的焦點(diǎn)坐標(biāo),由雙曲線的定義可得所求軌跡為焦點(diǎn)在x軸上的雙曲線,求得a'=4,b'=3,可得雙曲線方程.
解答 解:橢圓 $\frac{{x}^{2}}{1{3}^{2}}$+$\frac{{y}^{2}}{1{2}^{2}}$=1的a=13,b=12,c=$\sqrt{{a}^{2}-^{2}}$=5,
兩個焦點(diǎn)為(-5,0),(5,0),
由曲線C上的點(diǎn)到橢圓 $\frac{{x}^{2}}{1{3}^{2}}$+$\frac{{y}^{2}}{1{2}^{2}}$=1的兩個焦點(diǎn)的距離的差的絕對值等于8,
由雙曲線的定義可得所求軌跡為雙曲線,
且雙曲線的c'=5,a'=4,b'=$\sqrt{c{'}^{2}-a{'}^{2}}$=3,
即有雙曲線的方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1.
故選:D.
點(diǎn)評 本題考查橢圓和雙曲線的方程、性質(zhì),主要考查雙曲線的定義和方程的求法,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤0 | B. | a<0 | C. | a<2 | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (-1,-1) | C. | (1,-1) | D. | (1,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com