【題目】對于函數y=f(x),若在其定義域內存在x0 , 使得x0f(x0)=1成立,則稱x0為函數f(x)的“反比點”.下列函數中具有“反比點”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.
【答案】①②④
【解析】①由
則①具有“反比點”.
②設h(x)=xsinx﹣1,∵h(0)=﹣1<0, ,
∴h(x)=xsinx﹣1=0xsinx=1在上有解,所以②具有“反比點”.
③由(0,+∞),所以③不具有“反比點”;
④若xex=1令g(x)=xex﹣1,g(0)=﹣1<0,g(1)=e﹣1>0④具有“反比點”
⑤若在(0,+∞)上 有解,
令h(x)=xlnxh'(x)=lnx+1=0x=e﹣1 ,
可得h(x)在x=e﹣1有最小值﹣e﹣1 , 而 , 所以⑤不具有“反比點”,
所以答案是:①②④
【考點精析】解答此題的關鍵在于理解函數的值的相關知識,掌握函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.
科目:高中數學 來源: 題型:
【題目】某公司研究開發(fā)了一種新產品,生產這種新產品的年固定成本為150萬元,每生產千件,需另投入成本為 (萬元), .每件產品售價為500元.該新產品在市場上供不應求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(Ⅱ)當年產量為多少千件時,該公司在這一新產品的生產中所獲利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(2x+φ)(0<φ<2π)的圖象過點(,-2).
(1)求φ的值;
(2)若f()=,-<α<0,求sin(2α-)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了準確地把握市場,做好產品生產計劃,對過去四年的數據進行整理得到了第年與年銷量 (單位:萬件)之間的關系如表:
(Ⅰ)在圖中畫出表中數據的散點圖;
(Ⅱ)根據(Ⅰ)中的散點圖擬合與的回歸模型,并用相關系數甲乙說明;
(Ⅲ)建立關于的回歸方程,預測第5年的銷售量約為多少?.
附注:參考數據: , , .
參考公式:相關系數,
回歸方程中斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】研究人員隨機調查統(tǒng)計了某地1000名“上班族”每天在工作之余使用手機上網的時間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數據用該區(qū)間的中點值作代表,則可估計該地“上班族”每天在工作之余使用手機上網的平均時間是( )
A.1.78小時
B.2.24小時
C.3.56小時
D.4.32小時
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,真命題是( 。
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要條件
D.設 , 為向量,則“|?|=||||”是“∥”的充要條件
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com