若a,b,c∈R+,且a+b+c=6,則lga+lgb+lgc的取值范圍是( 。
分析:先根據(jù)對數(shù)的運算法則得lga+lgb+lgc=lg(abc),再由平均值不等式可求得取值范圍.
解答:解:∵a,b,c∈R+,
∴abc≤(
a+b+c
3
)
3
=8,
當且僅當a=b=c時等號成立,
∴l(xiāng)ga+lgb+lgc=lg(abc)≤lg8=3lg2,
則lga+lgb+lgc的取值范圍是(-∞,3lg2].
故選B.
點評:本題主要考查平均值不等式在函數(shù)極值中的應用.在應用平均值不等式時一定要注意取等號的要求.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

28、(1)一次函數(shù)f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,則對于任意x∈(m,n)都有f(x)>0,試證明之;
(2)試用上面結論證明下面的命題:若a,b,c∈R且|a|<1,|b|<1,|c|<1,則ab+bc+ca>-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c∈R+,且a+b+c=1,求
a
+
b
+
c
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>b且c∈R,則下列不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a、b、c∈R,且|a-c|<|b|,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構造三角形函數(shù)”.已知函數(shù)f(x)=
ex+t
ex+1
是“可構造三角形函數(shù)”,則實數(shù)t的取值范圍是( 。
A、[
1
2
,2]
B、[0,1]
C、[1,2]
D、[0,+∞)

查看答案和解析>>

同步練習冊答案