為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中抽取若干人組成研究小組,有關(guān)數(shù)據(jù)如表(單位:人).
高校 相關(guān)人數(shù) 抽取人數(shù)
A 18 x
B 36 2
C 54 y
(Ⅰ)求x,y;
(Ⅱ)若從抽取的人中選2人作專題發(fā)言,
(i)列出所有可能的抽取結(jié)果;
(ii)求這二人都來自高校C的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用抽樣的性質(zhì)直接求x,y即可;
(Ⅱ)設(shè)出A,B,C三所高校抽取的人分別為a;b1,b2;c1,c2,c3,列舉所有基本事件,利用古典概型概率公式計(jì)算即可.
解答: 解:(Ⅰ)由題意知,
x
18
=
2
36
=
y
54
,
∴x=1,y=3.
(Ⅱ)(i)記A,B,C三所高校抽取的人分別為a;b1,b2;c1,c2,c3,
則從抽取的人中選2人作專題發(fā)言所有可能的抽取結(jié)果是:
ab1,ab2,ac1,ac2,ac3,
b1b2,b1c1,b1c2,b1c3,
b2c1,b2c2,b2c3,
c1c2,c1c3,
c2c3,
共15種
(ii)“這二人都來自高校C”記為事件A,其包含的所有可能結(jié)果是共3種,
P(A)=
3
15
=
1
5
點(diǎn)評(píng):本題考查古典概型概率計(jì)算,抽樣的性質(zhì),列舉法的應(yīng)用等知識(shí),以及簡(jiǎn)單運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x-
1
x
6的展開式中常數(shù)項(xiàng)為( 。
A、-15B、15
C、-20D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,若使輸出的結(jié)果不大于20,則輸入的整數(shù)i的最大值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程y=bx+a是兩個(gè)具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2),…,(x10,y10)的回歸方程,則“x0=
x1+x2+…+x10
10
,y0=
y1+y2+…+y10
10
”是“(x0,y0)滿足線性回歸方程y=bx+a”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
π
3
-x),若要得到函數(shù)y=sin(-
π
6
-x)的圖象,只需將函數(shù)y=f(x)圖象上所有的點(diǎn)( 。
A、向左平移
π
2
個(gè)單位長(zhǎng)度
B、向右平移
π
2
個(gè)單位長(zhǎng)度
C、向左平移
3
個(gè)單位長(zhǎng)度
D、向右平移
3
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-(a2+a+1)x+a(a2+1)>0},B={y|y=
1
2
x2-x+
5
2
,0≤x≤3}
(1)若a=2時(shí),求(∁RA)∩B;
(2)若A∩B≠∅時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,若△AF1F2為正三角形且周長(zhǎng)為6;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上存在A,B兩點(diǎn)關(guān)于直線y=x+m對(duì)稱,求實(shí)數(shù)m的取值范圍;
(3)若直線l:y=kx+n與橢圓C交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證直線l過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某程序框圖如圖所示,則該程序運(yùn)行后輸出的S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) 把3本不同的語文書、7本不同的數(shù)學(xué)書隨機(jī)的排在書架上,則語文書排在一起的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案