給出下列命題:
①a>b與b<a是同向不等式;
②a>b且b>c等價于a>c;
③a>b>0,d>c>0,則
a
c
b
d
;
④a>b⇒ac2>bc2;
a
c2
b
c2
⇒a>b.
其中真命題的序號是
③⑤
③⑤
分析:①a>b與b<a是異向不等式;
②a>b且b>c⇒a>c,反之,則不成立;
③利用同向不等式取倒數(shù)法則進行判斷;
④當(dāng)c=0時不成立;
⑤利用不等式的性質(zhì)進行判斷.
解答:解:①a>b與b<a是異向不等式,故①不正確;
②a>b且b>c⇒a>c,反之,則不成立,故②不正確;
③d>c>0⇒
1
c
1
d
,
∴由a>b>0,得到
a
c
b
d
,故③正確;
④a>b⇒ac2≥bc2,故④不成立;
a
c2
b
c2
⇒a>b,故⑤正確.
故答案為:③⑤.
點評:本題考查不等式的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意不等式的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①|(zhì)
a
-
b
|≤|
a
|-|
b
|;②
a
,
b
共線,
b
,
c
平,則
a
c
為平行向量;③
a
b
,
c
為相互不平行向量,則(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,則△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,則
a
⊥(
b
-
c
)   
其中錯誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題
①設(shè)a、b為非零實數(shù),則“a<b”是“
1
a
1
b
”的充分不必要條件;
②命題P:垂直于同一條直線的兩直線平行,命題q:垂直于同一條直線的兩平面平行,則命題p∨q為真命題;
③命題“?r∈R,sinr<1”的否定為“?x0∈R,sinx0>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“若x+y<5,則x<2且y<3”.
其中真命題的個數(shù)有( 。
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
,
c
是平面內(nèi)的任意向量,給出下列命題:
(
a
b
)
c
=(
b
c
)
a
,②若
a
b
=
a
c
,則
a
=
0
b
=
c
,③(
a
+
b
)  (
a
-
b
)
=|
a
|
2
-|
b
|
2
,
其中正確的是
 
.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實數(shù)a,b,c,給出下列命題:
①“a=b”是“ac=bc”充要條件;
②“a+5是無理數(shù)”是“a是無理數(shù)”的充要條件
③“a>b”是“a2>b2”的充分條件;
④“a<5”是“a<3”的必要條件.
其中假命題的個數(shù)是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=
c
,
BC
=
a
CA
=
b
,給出下列命題
①若
a
b
>0
,則△ABC為鈍角三角形     ②若
a
b
=0
,則△ABC為直角三角形
③若
a
b
=
b
c
,則△ABC為等腰三角形  ④若
c
•(
a
+
b
+
c
)=0
,則△ABC為正三角形
其中真命題的個數(shù)是                                                     (  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案