四個不同的球任意放入三個不同的盒子中,每個盒子都不空的放法種數(shù)有

[  ]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是
.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省南充一中高三(下)6月適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有
③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省南充一中高三(下)6月適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省漳州市高三5月適應(yīng)性練習(xí)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給出下列四個命題:
①“向量a,b的夾角為銳角”的充要條件是“a•b>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有;
③將4個不同的小球全部放入3個不同的盒子,使得每個盒子至少放入1個球,共有72種不同的放法;
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案