分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,能求出此數(shù)列的通項(xiàng)公式.
(2)利用配方法能求出Sn的最小值.
解答 解:(1)∵數(shù)列{an}是等差數(shù)列,設(shè)其首相為a1,公差為d,
等差數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-10n$,
∴a1=S1=1-10=-9,
an=Sn-Sn-1=(n2-10n)-[(n-1)2-10(n-1)]=2n-11.
n=1時(shí),2n-11=-9=a1,
∴an=2n-11.
(2)∵等差數(shù)列{an}的前n項(xiàng)和:
${S_n}={n^2}-10n$=(n-5)2-25,
∴當(dāng)n=5時(shí),Sn取最小值S5=-25.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16π | B. | 12π | C. | 8π | D. | 4π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com