精英家教網 > 高中數學 > 題目詳情

【題目】在平面真角坐標系xOy中,曲線的參數方程為t為參數),以原點O為極點,x軸正半軸為極軸,建立根坐標系.曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線與曲線交于M,N兩點,直線OMON的斜率分別為,求的值.

【答案】121

【解析】

1)消去t即可得的普通方程,通過移項和可得的普通方程;(2)由可得的幾何意義是斜率,將的參數方程代入的普通方程,得到關于t的方程且,由韋達定理可得。

解:(1).由,(t為參數),消去參數t,得,即的普通方程為,由,得,即

代入,得,即的直角坐標方程為

(2).由t為參數),得,則的幾何意義是拋物線上的點(原點除外)與原點連線的斜率.由題意知

,(t為參數)代入,得

,且,且

MN對應的參數分別為、,則,,

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司培訓員工某項技能,培訓有如下兩種方式:

方式一:周一到周五每天培訓1小時,周日測試

方式二:周六一天培訓4小時,周日測試

公司有多個班組,每個班組60人,現任選兩組記為甲組、乙組先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓,分別估計員工受訓的平均時間精確到,并據此判斷哪種培訓方式效率更高?

在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點F與橢圓的右焦點重合,過焦點F的直線l交拋物線于A,B兩點.

1)求拋物線C的方程;

2)記拋物線C的準線與x軸的交點為H,試問:是否存在,使得,且成立?若存在,求實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,若過點可作三條直線與曲線相切,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成.已知半球的直徑是6 cm,圓柱筒高為2 cm.

1這種“浮球”的體積是多少cm3結果精確到0.1?

2要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機廠商在銷售200萬臺某型號手機時開展“手機碎屏險”活動、活動規(guī)則如下:用戶購買該型號手機時可選購“手機碎屏險”,保費為元,若在購機后一年內發(fā)生碎屏可免費更換一次屏幕.該手機廠商將在這萬臺該型號手機全部銷售完畢一年后,在購買碎屏險且購機后一年內未發(fā)生碎屏的用戶中隨機抽取名,每名用戶贈送元的紅包,為了合理確定保費的值,該手機廠商進行了問卷調查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機碎屏險”的用戶比例);

1)根據上面的數據求出關于的回歸直線方程;

2)通過大數據分析,在使用該型號手機的用戶中,購機后一年內發(fā)生碎屏的比例為.已知更換一次該型號手機屏幕的費用為元,若該手機廠商要求在這次活動中因銷售該“手機碎屏險”產生的利潤不少于萬元,能否把保費定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計分別為

,

參考數據:表中5個值從左到右分別記為,相應的值分別記為,經計算有,其中,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若函數個零點,求的取值范圍;

(2)若有兩個極值點,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是直角梯形,垂直于平面,,

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的最大值為(其中為自然對數的底數),的導函數。

(1)求的值;

(2)任取兩個不等的正數,且,若存在正數,使得成立。求證:。

查看答案和解析>>

同步練習冊答案