【題目】已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍;
(2)當(dāng)a=1且k∈Z時(shí),不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.
【答案】
(1)解:∵f(x)=ax+xlnx,
∴f′(x)=a+1+lnx,又函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),
∴當(dāng)x≥e時(shí),a+1+lnx≥0恒成立,
∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,即a的取值范圍為[﹣2,+∞);
(2)解:當(dāng)x>1時(shí),x﹣1>0,故不等式k(x﹣1)<f(x)k< ,
即 對(duì)任意x>1恒成立.
令 則 ,
令h(x)=x﹣lnx﹣2(x>1),
則 在(1,+∞)上單增.
∵h(yuǎn)(3)=1﹣ln3<0,h(4)=2﹣ln4>0,
∴存在x0∈(3,4)使h(x0)=0,
即當(dāng)1<x<x0時(shí),h(x)<0,即g′(x)<0,
當(dāng)x>x0時(shí),h(x)>0,即g′(x)>0,∴g(x)在(1,x0)上單減,在(x0,+∞)上單增.
令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2, =x0∈(3,4),
∴k<g(x)min=x0且k∈Z,
即kmax=3.
【解析】(1)易求f′(x)=a+1+lnx,依題意知,當(dāng)x≥e時(shí),a+1+lnx≥0恒成立,即x≥e時(shí),a≥(﹣1﹣lnx)max , 從而可得a的取值范圍;(2)依題意, 對(duì)任意x>1恒成立,令 則 ,再令h(x)=x﹣lnx﹣2(x>1),易知h(x)在(1,+∞)上單增,從而可求得g(x)min=x0∈(3,4),而k∈z,從而可得k的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)滿足,且當(dāng)時(shí),.
(1)求的值;
(2)證明:為單調(diào)增函數(shù);
(3)若,求在上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時(shí),解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各自獨(dú)立地進(jìn)行射擊比賽,甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 和 ,假設(shè)每次射擊是否擊中目標(biāo)相互之間沒有影響.
(1)求甲射擊3次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊3次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)1次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD= ,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足,數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列和的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,且a2=b(b+c).
(1)求證:∠A=2∠B;
(2)若a= b,判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3=5,S15=225.?dāng)?shù)列{bn}是等比數(shù)列,b3=a2+a3 , b2b5=128(其中n=1,2,3,…). (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=anbn , 求數(shù)列cn前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求ω的值及函數(shù)f(x)的值域;
(Ⅱ)若x∈[0,1],求函數(shù)f(x)的值域;
(Ⅲ)若 ,且 ,求f(x0+1)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com