解答:解:(1)∴f(x)=x
3+ax
2+bx+c
∵f′(x)=3x
2+2ax+b
而x=-1和x=3是極值點(diǎn),
所以
| f′(-1)=3-2a+b=0 | f′(3)=27+6a+b=0 |
| |
,解之得:a=-3,b=-9
又f(-1)=-1+a-b+c=-1-3+9+c=7,故得c=2;
(2)設(shè)g(x)=f(x)-(m-9)x=x
3-3x
2-9x+2-(m-9)x=x
3-3x
2-mx+2,
則g′(x)=3x
2-6x-m,
①當(dāng)△=36+12m>0,即m>-3時(shí),
若令g′(x)>0,解得x>3+
或x<3-
,
若令g′(x)<0,解得3-
<x<3+
,
則g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,3-
),(3+
,+∞),
g(x)的區(qū)間為單調(diào)減區(qū)間(3-
,3+
);
②當(dāng)△=36+12m>0,即m=-3時(shí),
若令g′(x)>0,解得x<-1或x>1,
則g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,-1),(1,+∞),無單調(diào)減區(qū)間;
③當(dāng)△=36+12m<0,即m<-3時(shí),
則g′(x)>0在(-∞,+∞)上恒成立,
則g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,+∞),無單調(diào)減區(qū)間.
綜上,①當(dāng)m>-3時(shí),g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,3-
),(3+
,+∞),
g(x)的區(qū)間為單調(diào)減區(qū)間(3-
,3+
);
②當(dāng)m=-3時(shí),g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,-1),(1,+∞),無單調(diào)減區(qū)間;
③當(dāng)m<-3時(shí),g(x)的區(qū)間為單調(diào)增區(qū)間(-∞,+∞),無單調(diào)減區(qū)間.