若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切線的是( )
A.①③
B.①④
C.②③
D.②④
【答案】分析:通過畫出函數(shù)圖象,觀察其圖象是否滿足在其上圖象上是否存在兩個(gè)不同點(diǎn)處的切線重合,從而確定是否存在自公切線,從而得到結(jié)論.
解答:解:x2-y2=1為等軸雙曲線,不存在自公切線,故①不存在;函數(shù)y=3sinx+4cosx的一條自公切線為y=5,故②存在;
函數(shù) y=x2-|x|的圖象如下左圖顯然滿足要求,故③存在;對(duì)于方程|x|+1=,其表示的圖形為圖中實(shí)線部分,不滿足要求,故④不存在.

點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及新定義自公切線,題目比較新穎,解題的關(guān)鍵是理解新的定義,同時(shí)考查了數(shù)形結(jié)合的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
4-
y
2
 

對(duì)應(yīng)的曲線中存在“自公切線”的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx; 
|x|+1=
4-y2

對(duì)應(yīng)的曲線中存在“自公切線”的有
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切線的是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽一中、潮州金山中學(xué)高三(上)聯(lián)合摸底數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
對(duì)應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷3(理科)(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
對(duì)應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案