【題目】函數(shù)f(x)=alnx+1(a>0).
(1)當x>0時,求證: ;
(2)在區(qū)間(1,e)上f(x)>x恒成立,求實數(shù)a的范圍.
(3)當 時,求證: (n∈N*).
【答案】
(1)證明:設(shè)
令 ,則x=1,即φ(x)在x=1處取到最小值,
則φ(x)≥φ(1)=0,即原結(jié)論成立.
(2)解:由f(x)>x得alnx+1>x
即 ,
令 ,
令 , ,
則h(x)單調(diào)遞增,所以h(x)>h(1)=0
∵h(x)>0,∴g'(x)>0,即g(x)單調(diào)遞增,則g(x)的最大值為g(e)=e﹣1
所以a的取值范圍為[e﹣1,+∞).
(3)證明:由第一問得知 ,則
則
=
=
=2n﹣
=2n﹣2( )=
【解析】(1)通過構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性、極值即可證明;(2)由f(x)>x得alnx+1>x,即 ,令 ,利用導數(shù)研究函數(shù)的單調(diào)性、極值及最大值即可;(3)由第一問得知 ,則 ,然后利用“累加求和”即可證明.
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握不等式的證明(不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學歸納法等)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)函數(shù),若是的極值點,求的值并討論的單調(diào)性;
(2)函數(shù)有兩個不同的極值點,其極小值為為,試比較與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|2x﹣a|,g(x)= (a∈R),若0<a<12,且對任意t∈[3,5],方程f(x)=g(t)在x∈[3,5]總存在兩不相等的實數(shù)根,求a的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點的橫坐標為,過的直線交于一點,交軸于點,過點作的垂線交于另一點,若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=4,a5+a7=14,{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點F(0,﹣1),且與直線l:y=1相切,橢圓N的對稱軸為坐標軸,O點為坐標原點,F(xiàn)是其一個焦點,又點A(0,2)在橢圓N上.若過F的動直線m交橢圓于B,C點,交軌跡M于D,E兩點,設(shè)S1為△ABC的面積,S2為△ODE的面積,令Z=S1S2 , Z的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在點F,使PB⊥平面DEF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若對于任一實數(shù)x,f(x)與g(x)至少有一個為負數(shù),則實數(shù)m的取值范圍是( )
A.(﹣4,﹣1)
B.(﹣4,0)
C.(0, )
D.(﹣4, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com