用二次項(xiàng)定理證明32n+2-8n-9能被64整除(n∈N).

 

見解析

【解析】證明:32n+2-8n-9=9n+1-8n-9=(8+1)n+1-8n-9

8n+1+8n+…+82+8+-8n-9

=64(8n-1+8n-2+…+)+8(n+1)+1-8n-9

=M×64(記M=8n-1+8n-2+…+).

∵M(jìn)為整數(shù),∴64M能被64整除.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

執(zhí)行如圖所示的程序框圖,輸出的S=________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

某商場(chǎng)為促銷設(shè)計(jì)了一個(gè)抽獎(jiǎng)模型,一定數(shù)額的消費(fèi)可以獲得一張抽獎(jiǎng)券,每張抽獎(jiǎng)券可以從一個(gè)裝有大小相同的4個(gè)白球和2個(gè)紅球的口袋中一次性摸出3個(gè)球,至少摸到一個(gè)紅球則中獎(jiǎng).

(1)求一次抽獎(jiǎng)中獎(jiǎng)的概率;

(2)若每次中獎(jiǎng)可獲得10元的獎(jiǎng)金,一位顧客獲得兩張抽獎(jiǎng)券,求兩次抽獎(jiǎng)所得的獎(jiǎng)金額之和X(元)的概率分布.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

從個(gè)位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)中任取一個(gè),其個(gè)位數(shù)為0的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)50件商品中有15件一等品,其余為二等品.現(xiàn)從中隨機(jī)選購(gòu)2件,則所購(gòu)2件商品中恰有一件一等品的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

6的二項(xiàng)展開式中的常數(shù)項(xiàng)為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知(ax+1)7(a≠0)的展開式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

已知拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過點(diǎn)M(2,y0).若點(diǎn)M到該拋物線焦點(diǎn)的距離為3,則OM=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)A(0,1).

(1)求橢圓的方程;

(2)過點(diǎn)A作兩條互相垂直的直線分別交橢圓于點(diǎn)M、N,求證:直線MN恒過定點(diǎn)P.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案