已知函數(shù)f(x)=ln(ex+a)(a>0) (1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x)及f(x)的導(dǎo)數(shù)f′(x). (2)假設(shè)對(duì)任意x∈[ln(3a),ln(4a)].不等式|m-f-1(x)|lnf′(x)<0成立.求實(shí)數(shù)m的取值范圍.
[考場(chǎng)錯(cuò)解] (1)由y=f(x)=ln(ex+a)得x=ln(ey-a).∴f-1(x)=ln(ex-a)(x>lna),f′(x)=[ln(ex+a)]′=
(2)由|m-f-1(x)|+ln[f′(x)]<0得-ln+ln(ex-a)<m<ln(ex-a)+ln在(ln(3a),ln(4a))上恒成立.設(shè)h(x)=ln(ex-a)+ln. S(x)=- ln+ln(ex-a).即m<[h(x)]mni.且m>[S(x)]max
∵S(x),h(x)=ln(ex-a)+ln(1+)在[ln(3a),ln(4a)]上是增函數(shù).∴[h(x)]min=ln(2a)+ln=ln(a). [S(x)]max=ln(3a)-ln=ln(a) ∴l(xiāng)n(a)<m<ln(a).
[專家把脈] 錯(cuò)在第(2)問h(x),S(x)在(ln(3a),ln(4a))上是增函數(shù)沒有根據(jù).應(yīng)用定義法或?qū)?shù)法判定后才能用這一結(jié)論.
[對(duì)癥下藥] (1)由y=f(x)=ln(ex+a)得x=ln(ey-a)∴y=f-1(x)=ln(ex-a)(x>lna),f′(x)= .
(2)解法1 由|m-f-1(x)|+ln(f′(x))< 0得-ln+ln(ex-a)<m<ln(ex-a)+ln.即對(duì)于x∈[ln(3a),ln(4a)]恒有<em< ①
設(shè)t=ex,u(t)=,v(t)=,于是不等式①化為u(t)<em<v(t),t∈[3a,4a]
當(dāng)t1<t2,t1,t2∈[3a,4a]時(shí)
u(t2)-u(t1)=-=>0.
v(t2)-v(t1)=-==>0
∴u(t),v(t)在[3a,4a]上是增函數(shù).
因此,當(dāng)t∈[3a,4a]時(shí),u(t)的最大值為u(4a)= a,v(t)的最小值為v(3a)=a,而不等式②成立,當(dāng)且僅當(dāng)u(4a)<em<v(3a).即a<em<a,于是,得ln a<m<ln(a).
解法2 由|m-f-1(x)|+ln(f′(x))<0得ln(ex-a)-ln(ex+a)+x<m<ln(ex-a)+ln(ex+a)-x.
設(shè)(x)=ln(ex-a)-ln(ex+a)+x,r(x)=ln(ex-a)+ln(ex+a)-x,
于是原不等式對(duì)于x∈[ln(3a),ln(4a)]恒成立等價(jià)于(x)<m<r(x).③
由′(x)=+1,-1.
注意到0<ex-a<ex<ex+a,故有′(x)>0,r′(x)>0,從而可知(x)與r(x)均在[ln(3a),h(4a)]上單調(diào)遞增,因此不等式③成立,當(dāng)且僅當(dāng)(ln(4a))<m<r(ln(3a)),即ln(a)<m<ln(a).
專家會(huì)診
論由指數(shù)函數(shù)和對(duì)數(shù)函數(shù)構(gòu)成的復(fù)合函數(shù)的單調(diào)性時(shí),首先要弄清復(fù)合函數(shù)的構(gòu)成,然后轉(zhuǎn)轉(zhuǎn)化為基本初等函數(shù)的單調(diào)性加以解決,注意不可忽視定義域,忽視指數(shù)和對(duì)數(shù)的底數(shù)對(duì)它們的圖像和性質(zhì)起的作用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
3 |
2 |
f′(x) |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com