【題目】在平面直角坐標系中,設過點且斜率為的直線與圓交于兩點.

1)的取值范圍;

2)若,求線段的長.

【答案】122

【解析】

1)設出直線方程,利用圓心到直線的距離小于半徑,即可求出k的范圍.

2)設Mx1,y1),Nx2y2),ykx+1代入(x22+y321得利用韋達定理以及向量的數(shù)量積轉(zhuǎn)化求解得k1,再利用弦長公式求解即可.

1)設直線方程:ykx+1,由dr,得,解得

2)設Mx1,y1),Nx2,y2),

ykx+1代入(x22+y321得(1+k2x24k+1x+70,,

x1x2+y1y2,得k1,故圓心到直線的距離為0,即直線過圓心,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖甲所示,是梯形的高,,,,先將梯形沿折起如圖乙所示的四棱錐,使得.

1)在棱上是否存在一點,使得平面?若存在,請求出的值,若不存在,請說明理由;

2)點是線段上一動點,當直線所成的角最小時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一片森林原面積為,計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積與上一年剩余面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10.為保護生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.

1)求每年砍伐面積與上一年剩余面積的百分比;

2)到今年為止,該森林已砍伐了多少年?

3)為保護生態(tài)環(huán)境,今后最多還能砍伐多少年?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,

,,,則,

但是,其中等號成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請你給出正確的答案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南京市自年成功創(chuàng)建“國家衛(wèi)生城市”以來,已經(jīng)連續(xù)三次通過“國家衛(wèi)生城市”復審,年下半年,南京將迎來第四次復審.為了了解市民綠色出行的意識,現(xiàn)從某單位隨機抽取名職工,統(tǒng)計了他們一周內(nèi)路邊停車的時間(單位:),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:

組號

分組

頻數(shù)

1)從該單位隨機選取一名職工,試估計其在該周內(nèi)路邊停車的時間少于小時的概率;

2)求頻率分布直方圖中,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,,分別為線段,的中點,點是線段的中點.求證:

1平面

2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:為偶函數(shù);

2)設,若對任意的,恒成立,求實數(shù)k的取值范圍.

3)是否存在正實數(shù),使得在區(qū)間上的值域剛好是,若存在,請寫在所有滿足條件的區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員毎次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算機產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定13,4表示命中,5,6,7,8,90表示不命中;再以三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為_________.

查看答案和解析>>

同步練習冊答案