8.一個(gè)圓錐的表面積為π,它的側(cè)面展開(kāi)圖是圓心角為120°的扇形,則該圓錐的高為$\sqrt{2}$.

分析 設(shè)圓錐的底面半徑為r,結(jié)合圓錐的表面積為π,它的側(cè)面展開(kāi)圖是圓心角為120°的扇形,求出圓錐和母線,進(jìn)而根據(jù)勾股定理可得圓錐的高.

解答 解:設(shè)圓錐的底面半徑為r,
∵它的側(cè)面展開(kāi)圖是圓心角為120°的扇形,
∴圓錐的母線長(zhǎng)為3r,
又∵圓錐的表面積為π,
∴πr(r+3r)=π,
解得:r=$\frac{1}{2}$,l=$\frac{3}{2}$,
故圓錐的高h(yuǎn)=$\sqrt{\frac{9}{4}-\frac{1}{4}}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,熟練掌握?qǐng)A錐的幾何特征是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn且滿足Sn=2an-1,n∈N*;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1,求{Tn}的通項(xiàng)公式;
(3)設(shè)有m項(xiàng)的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+$\frac{1}{_{1}}$)+lg(1+$\frac{1}{_{2}}$)+…+lg(1+$\frac{1}{_{m}}$)=lg(log2am).
問(wèn)數(shù)列{bn}最多有幾項(xiàng)?并求出這些項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)y=(x2+bx-4)logax(a>0且a≠1)若對(duì)任意x>0,恒有y≤0,則ba的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)滿足f(x+2)=3f(x),且當(dāng)x∈(0,2]時(shí),f(x)=2x
(1)求f(log2$\sqrt{3}$),f(5)的值;
(2)求當(dāng)x∈(4,6]時(shí)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若冪函數(shù)y=(k-2)xm-2015(k,m∈R)的圖象過(guò)點(diǎn)$(\frac{1}{2}\;,\;4)$,則k+m=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,已知A,B分別是函數(shù)f(x)=$\sqrt{3}$sinωx(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則該函數(shù)的周期是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點(diǎn),點(diǎn)M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y 的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中與函數(shù)y=x表示同一函數(shù)的是( 。
A.y=($\sqrt{x}$)2B.y=${a^{{{log}_a}x}}$C.y=$\root{3}{{x}^{3}}$D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案