如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E是BC1的中點(diǎn),則直線DE與平面ABCD所成角的正切值為
5
5
5
5
分析:過E作EF⊥BC,交BC于F,連接DF,得到∠EDF是直線DE與平面ABCD所成的角,然后再在三角形EDF中求出此角即可.
解答:解:過E作EF⊥BC,交BC于F,連接DF.
∵EF⊥BC,CC1⊥BC
∴EF∥CC1,而CC1⊥平面ABCD
∴EF⊥平面ABCD,
∴∠EDF是直線DE與平面ABCD所成的角(4分)
由題意,得EF=
1
2
CC1=1

CF=
1
2
CB=1, ∴DF=
5.
(8分)
∵EF⊥DF,∴tan∠EDF=
EF
DF
=
5
5
.(10分)
故答案為
5
5
點(diǎn)評(píng):本題主要考查了直線與平面之間所成角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體A-BCD中,若以△ABC為視角正面,則其正視圖的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市慈溪市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如圖,在棱長為2的正四面體A-BCD中,若以△ABC為視角正面,則其正視圖的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的面積為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的面積為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的面積為        

 

查看答案和解析>>

同步練習(xí)冊(cè)答案