【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 84 | 83 | 80 | 75 | 68 |
已知.
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;可供選擇的數(shù)據(jù):,;
(3)用表示用(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的最小二乘估計分別為,)
【答案】(1)90;(2);(3)見解析
【解析】
(1)根據(jù)y的平均數(shù)求出q的值即可;
(2)分別求出回歸方程的系數(shù)的值,求出回歸方程即可;
(3)根據(jù)回歸方程分別計算出共有3個“好數(shù)據(jù)”,求出滿足條件的概率,列出分布列,求出均值即可.
(1),可得:
,求得.
(2),
,
所以所求的線性回歸方程為.
(3)利用(2)中所求的線性回歸方程,
可得,當(dāng)時,;當(dāng)時,;
當(dāng)時,;當(dāng)時,;
當(dāng)時,;當(dāng)時,.
與銷售數(shù)據(jù)對比可知滿足的共有3個“好數(shù)據(jù)”:
.
于是的所有可能取值為0,1,2,3.
;
,
∴的分布列為:
于是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax-a),其中a是常數(shù).
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若存在實數(shù)k,使得關(guān)于x的方程f(x)=k在[0,+∞)上有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,,則在這個紅色子數(shù)列中,由1開始的第1000個數(shù)是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時隨機(jī)選擇手心或手背其中一種手勢,規(guī)定相同手勢人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機(jī)摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南康某服裝廠擬在年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元滿足.已知年生產(chǎn)該產(chǎn)品的固定投入為萬元,每生產(chǎn)萬件該產(chǎn)品需要再投入萬元.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費用).
(1)將年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該服裝廠年的促銷費用投入多少萬元時,利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差d>0,則下列四個命題:
①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;
③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com