【題目】如圖1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,點(diǎn)E、F分別在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.現(xiàn)將矩形ADEF沿EF折起,使平面ADEF與平面EFBC垂直(如圖2).

(1)求證:CD∥面ABF;
(2)當(dāng)AF的長(zhǎng)為何值時(shí),二面角A﹣BC﹣F的大小為30°.

【答案】
(1)證明:∵CE∥BF,CE面ABF,BF面ABF,

∴CE∥面ABF,

又DE∥AF,DE面ABF,AF面ABF,

∴DE∥面ABF,

∵DE∩CE=E,且DE、CE面CDE,

∴面CDE∥面ABF,

又CD面CDE,∴CD∥面ABF.


(2)解:過F作CB的垂線,交CB的延長(zhǎng)線于H點(diǎn),連結(jié)AH,

∵面ADEF⊥面EFBC,AF⊥EF,

∴AF⊥面EFBC,CB面EFBC,

∴CB⊥AF,CB⊥面AF,

∴AH⊥CH,

∴∠AHF是二面角A﹣BC﹣F的平面角,

∴∠AHF=30°,

∵BC=1,CE=2,且BE⊥BC,∴∠BCE=60°,

在直線梯形EFBC中,BF=2﹣cos60°= ,

∴FH= = ,

在直角三角形AHF中,AF=FH


【解析】(1)推導(dǎo)出CE∥面ABF,DE∥面ABF,由此能證明面CDE∥面ABF,從而CD∥面ABF.(2)過F作CB的垂線,交CB的延長(zhǎng)線于H點(diǎn),連結(jié)AH,推導(dǎo)出∠AHF是二面角A﹣BC﹣F的平面角,由此能求出AF的長(zhǎng).
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面是正方形的四棱錐中, , ,點(diǎn)上,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國(guó)漢字聽寫大會(huì)》的活動(dòng).為響應(yīng)學(xué)校號(hào)召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績(jī)畫出莖葉圖,如圖所示,甲的成績(jī)中有一個(gè)數(shù)的個(gè)位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計(jì)學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x-P2-x,則下列結(jié)論正確的是(  )

A. ,為奇函數(shù)且為R上的減函數(shù)

B. 為偶函數(shù)且為R上的減函數(shù)

C. ,為奇函數(shù)且為R上的增函數(shù)

D. 為偶函數(shù)且為R上的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若sin(A﹣B)+sinC= sinA.
(1)求角B的值;
(2)若b=2,求a2+c2的最大值,并求取得最大值時(shí)角A,C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為滿意,否則為不滿意,請(qǐng)完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計(jì)

16

14

合計(jì)

30

)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

參考數(shù)據(jù):

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題中:

①命題“若x≥2且y≥3,則x+y≥5”為假命題.

②命題“若x2-4x+3=0,則x=3”的逆否命題為:“若x≠3,則x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要條件

④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若任意的a、b∈[-1,1],當(dāng)a+b≠0時(shí),總有

(1)判斷函數(shù)fx)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;

(2)解不等式:

(3)若fx)≤m2-2pm+1對(duì)所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常數(shù)),試用常數(shù)p表示實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0
(1)求C的大。
(2)求a2+b2的最大值,并求取得最大值時(shí)角A,B的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案