6.正四棱臺的上、下底面邊長分別為1cm,3cm,側(cè)棱長為2cm,則棱臺的側(cè)面積為( 。
A.4B.8C.4$\sqrt{3}$D.8$\sqrt{3}$

分析 利用已知條件求出斜高,然后求解棱臺的側(cè)面積即可.

解答 解:正四棱臺的上、下底面邊長分別為1cm,3cm,側(cè)棱長為2cm,
所以棱臺的斜高為:$\sqrt{{2}^{2}-(\frac{3-1}{2})^{2}}$=$\sqrt{3}$.
所以棱臺的側(cè)面積是:4×$\frac{1+3}{2}$×$\sqrt{3}$=8$\sqrt{3}$.
故選:D.

點評 本題考查棱臺的側(cè)面積的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知三個數(shù)1,a,9成等比數(shù)列,則圓錐曲線$\frac{x^2}{a}+\frac{y^2}{2}=1$的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.復數(shù)z滿足(1+i)z=i+2,則z的虛部為( 。
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.右邊程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入a,b的值分別為16,24,則輸出的a的值為(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$右焦點到漸近線的距離為( 。
A.3B.4C.5D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等式(1+x)2n-1=(1+x)n-1(1+x)n
(1)求(1+x)2n-1的展開式中含xn的項的系數(shù),并化簡:${C}_{n-1}^{0}$${C}_{n}^{n}$+${C}_{n-1}^{1}$+…+${C}_{n-1}^{n-1}$${C}_{n}^{1}$;
(2)證明:(${C}_{n}^{1}$)2+2(${C}_{n}^{2}$)2+…+n(${C}_{n}^{n}$)2=n${C}_{2n-1}^{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題正確的是(  )
A.命題“$?{x_0}∈R,{x_0}^2+1>3{x_0}$”的否定是“$?{x_0}∈R,{x^2}+1>3x$”
B.“函數(shù)f(x)=cosax-sinax的最小正周期為 π”是“a=2”的必要不充分條件
C.x2+2x≥ax在x∈[1,2]時有解?(x2+2x)min≥(ax)min在x∈[1,2]時成立
D.“平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的充分必要條件是“$\overrightarrow a$•$\overrightarrow b$<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.按如圖所示的程序框圖,在運行后輸出的結(jié)果為( 。
A.55B.56C.65D.66

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面積為$\frac{{15\sqrt{3}}}{4}$,周長為 15,求c.

查看答案和解析>>

同步練習冊答案