4.一袋中裝有5只球,編號為1,2,3,4,5,在袋中同時取3只,以ξ表示取出的3只球中的最大號碼,寫出隨機變量ξ的分布列.

分析 根據(jù)題意得出隨機變量ξ的取值為3,4,5;計算對應(yīng)的概率值,寫出ξ的分布列.

解答 解:隨機變量ξ的取值為3,4,5;
P(ξ=3)=$\frac{{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
P(ξ=4)=$\frac{{C}_{3}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(ξ=5)=$\frac{{C}_{4}^{2}}{{C}_{5}^{3}}$=$\frac{6}{10}$=$\frac{3}{5}$;
因此ξ的分布列為

ξ345
P$\frac{1}{10}$$\frac{3}{10}$$\frac{6}{10}$

點評 本題考查了離散型隨機變量的概率與分布列的計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-ax2-3x.
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)h(x)=2xlnx,對一切x∈(0,+∞),都有h(x)+$\frac{f(x)}{x}$≥-6恒成立,求a的取值范圍;
(Ⅲ)若x=3是函數(shù)f(x)的極值點,是否存在實數(shù)b,使得函數(shù)g(x)=-7x+b的圖象與函數(shù)f(x)的圖象恰有1個交點?若存在,請求出實數(shù)b的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.兩封信隨機地投入到編號為A,B,C的三個空郵筒中,則A郵筒中信件數(shù)x的數(shù)學(xué)期望E(x)等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$為平面向量,且$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow$=(x,y),|$\overrightarrow$|=4.
(1)若$\overrightarrow{a}$,$\overrightarrow$的夾角為150°,求|2$\overrightarrow{a}+\overrightarrow$|及|$\overrightarrow{a}-2\overrightarrow$|;
(2)若$\overrightarrow$是與$\overrightarrow{a}$平行的向量,求$\overrightarrow$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,60°的二面角棱上有A′,B′兩點,直線AA′,BB′分別在這個二面角的半平面內(nèi),且都垂直于A′B′,已知A′B′=3,AA′=3,BB′=5,則AB的長度為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,點M是側(cè)棱SC的中點.
(Ⅰ)求異面直線BM與CD所成角的大;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.現(xiàn)有五個球分別記為A,C,J,K,S,隨機放進三個盒子,每個盒子只能放一個球,則K或S在盒中的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若存在正數(shù)a和實數(shù)x0,使得f(x0+a)=f(x0)+a成立,則稱區(qū)間[x0,x0+a]為函數(shù)f(x)的“公平增長區(qū)間”.則下列四個函數(shù):
①f(x)=2x-1
②f(x)=||x|-1|,
③$f(x)=\sqrt{{x^2}-1}$,
④f(x)=$\sqrt{{x}^{2}-1}$-x,x∈[1,+∞)
其中有“公平增長區(qū)間”的為②④(填出所有正確結(jié)論的番號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=$\frac{1}{2}$ax2+2x-lnx(a≠0)在區(qū)間[1,2]上是增函數(shù),則實數(shù)a的最小值為( 。
A.1B.-1C.-$\frac{3}{4}$D.-2

查看答案和解析>>

同步練習(xí)冊答案