【題目】在一項研究中,為盡快攻克某一課題,某生物研究所分別設立了甲、乙兩個研究小組同時進行對比試驗,現(xiàn)隨機在這兩個小組各抽取40個數(shù)據(jù)作為樣本,并規(guī)定試驗數(shù)據(jù)落在[495,510)之內的數(shù)據(jù)作為理想數(shù)據(jù),否則為不理想數(shù)據(jù).試驗情況如表所示
(1)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表;
(2)判斷是否有90%的把握認為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對兩個研究小組的選擇有關;說明你的理由;(下面的臨界值表供參考)
(參考公式:其中n=a+b+c+d)
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)試驗數(shù)據(jù)落在[495,510)之內的數(shù)據(jù)作為理想數(shù)據(jù)完成2×2列聯(lián)表可得答案;
(2)根據(jù)公式計算觀測值,對照臨界表可得出結論.
(1)根據(jù)以上統(tǒng)計數(shù)據(jù)完成2×2列聯(lián)表,如下;
甲組 | 乙組 | 合計 | |
理想數(shù)據(jù) | 30 | 36 | 66 |
不理想數(shù)據(jù) | 10 | 4 | 14 |
合計 | 40 | 40 | 80 |
(2)由表中數(shù)據(jù)計算的觀測值為
,
所以有90%的把握認為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對兩個研究小組的選擇有關.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人去某地務工,其工作受天氣影響,雨天不能出工,晴天才能出工.其計酬方式有兩種,方式一:雨天沒收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要選擇其中一種計酬方式,并打算在下個月(天)內的晴天都出工,為此三人作了一些調查,甲以去年此月的下雨天數(shù)(天)為依據(jù)作出選擇;乙和丙在分析了當?shù)亟?/span>年此月的下雨天數(shù)()的頻數(shù)分布表(見下表)后,乙以頻率最大的值為依據(jù)作出選擇,丙以的平均值為依據(jù)作出選擇.
8 | 9 | 10 | 11 | 12 | 13 | |
頻數(shù) | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)試判斷甲、乙、丙選擇的計酬方式,并說明理由;
(Ⅱ)根據(jù)統(tǒng)計范圍的大小,你覺得三人中誰的依據(jù)更有指導意義?
(Ⅲ)以頻率作為概率,求未來三年中恰有兩年,此月下雨不超過天的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,恒成立,求實數(shù)的取值范圍;
(2)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分形理論是當今世界十分風靡和活躍的新理論、新學科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標準的自相似分形是數(shù)學上的抽象,迭代生成無限精細的結構。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個黑色三角形內去掉小三角形則當時,該黑色三角形內共去掉( )個小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處取得極值,求在處的切線方程;
(2)討論的單調性;
(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的周期為3的奇函數(shù),且當時,,則方程在區(qū)間上的解得個數(shù)是( )
A. B. 6 C. 7 D. 9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“微信運動”已經成為當下熱門的健身方式,韓梅梅的微信朋友圈內有800為好友參與了“微信運動”.他隨機抽取了50為微信好友(男、女各25人),統(tǒng)計其在某一天的走路步數(shù).其中女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步數(shù)情況可以分為五個類別(0-2000步)(說明:“0-2000”表示大于等于0,小于等于2000,下同),(2001-5000)、(5001-8000)、(8001-10000步)、(10001步及以上),且三中類型的人數(shù)比例為,將統(tǒng)計結果繪制如圖所示的柱形圖.
若某人一天的走路步數(shù)超過8000步則被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)若以韓梅梅抽取的好友當天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計韓梅梅的微信好友圈里參與“微信運動”的800名好友中,每天走路步數(shù)在5001-10000步的人數(shù);
(2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | 25 | ||
女 | 25 | ||
總計 | 30 |
(3)若從韓梅梅當天選取的步數(shù)大于10000的好友中按男女比例分層選取5人進行身體狀況調查,然后再從這5位好友中選取2人進行訪談,求至少有一位女性好友訪談的概率.
參考公式:,其中.
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
【答案】(1)見解析;(2)
【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為
試題分析:(1)設出點的坐標,聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結論;(2)結合(1)的結論求得實數(shù)的值,分類討論即可求得直線的方程和圓的方程.
試題解析:(1)設,.
由 可得,則.
又,故.
因此的斜率與的斜率之積為,所以.
故坐標原點在圓上.
(2)由(1)可得.
故圓心的坐標為,圓的半徑.
由于圓過點,因此,故,
即,
由(1)可得.
所以,解得或.
當時,直線的方程為,圓心的坐標為,圓的半徑為,圓的方程為.
當時,直線的方程為,圓心的坐標為,圓的半徑為,圓 的方程為.
【名師點睛】直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數(shù)的關系;在解決直線與拋物線的位置關系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用“點差法”,但不要忘記驗證或說明中點在曲線內部.
【題型】解答題
【結束】
21
【題目】已知函數(shù).
(1)若,求a的值;
(2)設m為整數(shù),且對于任意正整數(shù)n,,求m的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com