已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使與橢圓交于不同的兩點(diǎn)、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

 

【答案】

I)橢圓的方程為.Ⅱ)存在滿足題設(shè)條件的直線,且的斜率取值范圍是

.

【解析】

題分析:(Ⅰ)由題意知:.,且,由此可求得,二者相加即得,從而得橢圓的方程. (Ⅱ)假設(shè)這樣的直線存在,且直線的方程為,設(shè)與橢圓的兩交點(diǎn)為、,若線段恰被直線平分,則.這顯然用韋達(dá)定理.

.再用韋達(dá)定理得 ,代入,再將此式代入得一只含的不等式,解此不等式即得的取值范圍.

試題解析:(Ⅰ)由題意知:, (1分)

橢圓上的點(diǎn)滿足,且,

,

. (2分)

. (3分)

橢圓的方程為. (4分)

(Ⅱ)假設(shè)這樣的直線存在.與直線相交,直線的斜率存在.

設(shè)的方程為, (5分)

.(*) (6分)

直線與橢圓有兩個交點(diǎn),

*)的判別式,即.① (7分)

設(shè),則 .  (8分)

被直線平分,可知,

,. ②    (9分)

把②代入①,得,即. (10分)

,. (11分)

.即存在滿足題設(shè)條件的直線,且的斜率取值范圍是

. (12分)

考點(diǎn):直線與圓錐曲線.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點(diǎn)分別為,離心率,右準(zhǔn)線方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)的直線與該橢圓交于MN兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊答案