(本小題滿分16分)

已知函數(shù).

(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;

(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值;

(Ⅲ)若存在,使得,試求的取值范圍.

 

【答案】

解:(Ⅰ)      ………………3分

由于,故當(dāng)時(shí),,所以,

故函數(shù)上單調(diào)遞增                ……………………………5分

(Ⅱ)當(dāng)時(shí),因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052509402542182703/SYS201205250944129375806192_DA.files/image009.png">,且在R上單調(diào)遞增,

     故有唯一解                 ………………………………7分

  所以的變化情況如下表所示:

 

 

 

x

0

0

遞減

極小值

遞增

 又函數(shù)有三個(gè)零點(diǎn),所以方程有三個(gè)根,

   而,所以,解得…………………11分

(Ⅲ)因?yàn)榇嬖?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052509402542182703/SYS201205250944129375806192_DA.files/image020.png">,使得,所以當(dāng)時(shí),…………12分

   由(Ⅱ)知,上遞減,在上遞增,

   所以當(dāng)時(shí),

   而,

   記,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052509402542182703/SYS201205250944129375806192_DA.files/image029.png">(當(dāng)時(shí)取等號(hào)),

   所以上單調(diào)遞增,而,

   所以當(dāng)時(shí),;當(dāng)時(shí),

   也就是當(dāng)時(shí),;當(dāng)時(shí),……14分

   ①當(dāng)時(shí),由,

   ②當(dāng)時(shí),由,

綜上知,所求的取值范圍為…………………………16

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M,其中m>0,

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù)(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對(duì)任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對(duì)任意恒成立”與“內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請(qǐng)注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)

(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對(duì)稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案